切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2018, Vol. 15 ›› Issue (04) : 303 -308. doi: 10.3877/cma.j.issn.1672-6448.2018.04.013

所属专题: 文献

基础研究

诊断超声产生的血流增强效应及肿瘤释药研究
王亚辉1, 益磋1, 冯爽1, 董小小1, 刘政1,()   
  1. 1. 400037 重庆,陆军军医大学第二附属医院超声科
  • 收稿日期:2017-10-23 出版日期:2018-04-01
  • 通信作者: 刘政
  • 基金资助:
    国家重点研发计划数字诊疗装备研发重点专项(2017YFC0107300)

Research of ultrasound vascular effects and drug delivery to tumor

Yahui Wang1, Cuo Yi1, Shuang Feng1, Xiaoxiao Dong1, Zheng Liu1,()   

  1. 1. Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
  • Received:2017-10-23 Published:2018-04-01
  • Corresponding author: Zheng Liu
  • About author:
    Corresponding author: Liu Zheng, Email:
引用本文:

王亚辉, 益磋, 冯爽, 董小小, 刘政. 诊断超声产生的血流增强效应及肿瘤释药研究[J]. 中华医学超声杂志(电子版), 2018, 15(04): 303-308.

Yahui Wang, Cuo Yi, Shuang Feng, Xiaoxiao Dong, Zheng Liu. Research of ultrasound vascular effects and drug delivery to tumor[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2018, 15(04): 303-308.

目的

采用诊断超声激励微泡的方法增强肿瘤组织的血流灌注,增加肿瘤组织局部阿霉素的释放。

方法

选取健康雄性SD大鼠10只,双侧大腿内侧皮下种植Walker-256肿瘤20个,随机配对分为对照组(10例)与超声治疗组(10例)。治疗前后分别进行超声造影,对超声造影图像进行定量分析。治疗后获取部分肿瘤组织后行高效液相色谱法检测肿瘤组织的药物浓度,另外采用冰冻切片观察肿瘤组织内阿霉素的荧光强度。治疗组与对照组定量分析峰值强度(PI)、曲线下面积(AUC)及阿霉素药物质量浓度比较,采用配对t检验。

结果

(1)超声治疗后视觉造影效果中,6个明显增强,4个无明显变化,定量分析PI及AUC明显高于治疗前(PI:75.74±17.67 vs 66.22±16.25,AUC:3354.91±796.15 vs 2937.52±677.51),差异均有统计学意义(t=-5.212、-5.259,P均<0.001);(2)治疗组阿霉素药物质量浓度是对照组的1.2倍[(1.15±0.25)μg/g vs(0.96±0.21)μg/g],差异有统计学意义(t=2.403,P<0.05);(3)各组肿瘤组织光镜下表现:肿瘤细胞排列成条索状,核大深染,治疗组可见血管充血,有少量炎症细胞浸润;(4)激光共聚焦显微镜下可见治疗组肿瘤组织间质中外漏的阿霉素荧光明显多于对照组。

结论

诊断超声激励微泡治疗可增强大鼠Walker-256肿瘤的血流灌注,有助于化疗药物局部释放。

Objective

To improve the chemotherapy drug delivery to tumor by enhancing the tumor vascular perfusion induced by diagnostic ultrasound combined with microbubbles.

Methods

Ten healthy male sprague-dawley (SD) rats with total twenty walker-256 tumors implanted in the two back legs were randomized to the two paired groups: controlled group (C, n=10) and treatment group (T, n=10). Tumors in the controlled group were ultrasonic sham operated, while in the treatment group were treated by diagnostic ultrasound combined with microbubbles. The treatment group were taken contrast-enhanced ultrasound (CEUS) before and after treatment and analyzed the quantitative parameters. The microbubbles used in the treatment and CEUS was a kind of self-made lipid microbubbles called Zhifuxian. The 0.02 ml microbubbles were bolus injected at CEUS, while during treatment, 0.04 ml microbubbles diluted into 1 ml saline solution were injected slowly at constant speed. Flushed by saline solution after treatment, the rats′ tumors were harvested into three parts: one for chemotherapy drug concentration detected by high performance liquid chromatography (HPLC), one for HE detection, and one for Dox fluorescence intensity detected by confocal laser scanning microscopy (CLSM). The peak intensity (PI) values, the area under curve (AUC) values and the Dox concentration of each group were analyzed by pared-samples t test.

Results

(1) The contrast enhanced ultrasound quantitative analysis of the T group: PI value of the tumors before and after treatment were 66.22±16.25 and 75.74±17.67. The AUC values were 2937.52±677.51 and 3354.91±796.15. There was significant statistical difference between them (t=-5.212, -5.259, all P<0.05). (2) The Dox concentration of the T and C groups were (1.15±0.25) ug/g and (0.96±0.21) ug/g. There was significant statistical difference between them (t=2.403, P<0.05). The Dox concentration of the treatment group was 1.2 times of the controlled group. (3) The pathology results of T and C groups: the tumor cells were arranged in cords, with big round deep-stained nucleus. No pathological changes were observed in the controlled group, and there was no significant difference between the two groups. But in the treatment group, tumor vascular congestion and inflammatory cell infiltration could be observed. (4) The confocal laser scanning microscopy (CLSM) detection of the T and C groups: the Dox red fluorescence was distributed in the tumor tissue interstitial, and the fluorescence intensity and distribution area of the treatment group were significant higher than the controlled group.

Conclusions

Diagnostic ultrasound combined with microbubbles treatment could significantly increase the blood perfusion in the walker-256 tumors of SD rats. Taking advantage of this vascular effect, the chemotherapy drug Dox could be delivered much more to the tumor tissue along with circulating bloodstream. With the addition of the sonoporation effect induced by the cavitation of the microbubbles, the chemotherapy drugs could be released much more to the tumor interstitial tissue.

图1~3 Walker-256肿瘤二维及超声造影图像。图1为肿瘤二维图像,黄色虚线勾选的为肿瘤,可见肿瘤呈椭圆形,内部回声不均;图2为同一肿瘤超声治疗前超声造影图像,白色线条勾选的为可变区域,出现微泡灌注(箭头所示);图3为同一肿瘤超声治疗后超声造影图像,白色线条勾选的为可变区域,可见治疗后肿瘤内血流灌注明显增强,在一些治疗前无微泡灌注的区域也出现微泡灌注(箭头所示)
图4,5 Walker-256肿瘤超声造影数据的时间-信号曲线曲线。图4,5分别为同一肿瘤治疗前后超声造影数据的时间-强度曲线,横轴为时间,纵轴为强度,可见治疗后时间-强度曲线最高点明显升高,曲线下降的斜率也更平缓
表1 Walker-256肿瘤大鼠治疗前后超声造影PI与AUC值及Dox药物质量浓度比较(±s
图6~8 肿瘤组织病理图像。图6为对照组肿瘤组织可见肿瘤细胞排列成条状,核大深染(HE ×100);图7为治疗组肿瘤组织内可见肿瘤血管充血(箭头所示,HE ×100);图8为治疗组肿瘤组织内可见少量炎症细胞浸润(箭头所示,HE ×100)
图9~14 对照组与治疗组Dox分布的激光共聚焦成像图。图10~12分别为对照组DAPI、Dox及Merge后的荧光分布图,肿瘤组织内几乎不可见红色荧光;图13~15分别为治疗组DAPI、Dox及Merge后的荧光分布图,其内可见明显红色荧光
[1]
Wood AK,Sehgal CM. A review of low-intensity ultrasound for cancer therapy[J]. Ultrasound Med Biol, 2015, 41(4): 905-928.
[2]
Tomizawa M,Ebara M,Saisho H, et al. Irradiation with ultrasound of low output intensity increased chemosensitivity of subcutaneous solid tumors to an anti-cancer agent[J]. Cancer Lett, 2001, 173(1): 31-35.
[3]
Nomikou N,Li YS,Mchale AP. Ultrasound-enhanced drug dispersion through solid tumours and its possible role in aiding ultrasound-targeted cancer chemotherapy[J]. Cancer Lett, 2010, 288(1): 94-98.
[4]
Galmarini FC,Galmarini CM,Sarchi MI, et al. Heterogeneous distribution of tumor blood supply affects the response to chemotherapy in patients with head and neck cancer[J]. Microcirculation, 2000, 7(6 Pt 1): 405-410.
[5]
乔学研, 陈重, 益磋, 等. 诊断超声联合微泡对兔VX2肿瘤的血流增强效应[J]. 临床超声医学杂志, 2017, 19(4): 217-221.
[6]
Ibsen S,Schutt CE,Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment[J]. Drug Des Devel Ther, 2013, 7: 375-388.
[7]
Lammertink BH,Bos C,Deckers R, et al. Sonochemotherapy: from bench to bedside[J]. Front Pharmacol, 2015, 6: 138.
[8]
Yan F,Li L,Deng Z, et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers[J]. J Control Release, 2013, 166(3): 246-255.
[9]
Li P,Zheng Y,Ran H, et al. Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice[J]. J Control Release, 2012, 162(2): 349-354.
[10]
Sorace AG,Warram JM,Umphrey H, et al. Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer[J]. J Drug Target, 2012, 20(1): 43-54.
[11]
Qin J,Wang TY,Willmann JK. Sonoporation: Applications for Cancer Therapy[J]. Adv Exp Med Biol, 2016, 880: 263-291.
[12]
Mullick CS,Lee T,Willmann JK. Ultrasound-guided drug delivery in cancer[J]. Ultrasonography, 2017, 36(3): 171-184.
[13]
Xiong XX,Qiu XY,Hu DX, et al. Advances in Hypoxia-Mediated Mechanisms in Hepatocellular Carcinoma[J]. Mol Pharmacol, 2017, 92(3): 246-255.
[14]
Mahase S,Rattenni RN,Wesseling P, et al. Hypoxia-Mediated Mechanisms Associated with Antiangiogenic Treatment Resistance in Glioblastomas[J]. Am J Pathol, 2017, 187(5): 940-953.
[15]
Belcik JT,Mott BH,Xie A, et al. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation[J]. Circ Cardiovasc Imaging, 2015, 8(4). pii: e002979.
[16]
Maruo A,Hamner CE,Rodrigues AJ, et al. Nitric oxide and prostacyclin in ultrasonic vasodilatation of the canine internal mammary artery[J]. Ann Thorac Surg, 2004, 77(1): 126-132.
[17]
Belcik JT,Davidson BP,Xie A, et al. Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling[J]. Circulation, 2017, 135(13): 1240-1252.
[18]
章希睿, 张明博, 桑茂栋, 等. 医学超声造影成像的新技术研究进展[J]. 中国生物医学工程学报, 2016, 35(2): 225-233.
[19]
庄华. 超声造影时间强度曲线在腹腔脏器功能及肿瘤灌注成像定量研究中的应用进展[J]. 生物医学工程学杂志, 2011, 28(3): 640-644.
[20]
Sun B,Deng C,Meng F, et al. Robust, active tumor-targeting and fast bioresponsive anticancer nanotherapeutics based on natural endogenous materials[J]. Acta Biomater, 2016, 45: 223-233.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[3] 朱连华, 费翔, 韩鹏, 姜波, 李楠, 罗渝昆. 高帧频超声造影在胆囊息肉样病变中的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 904-910.
[4] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[5] 陈舜, 薛恩生, 叶琴. PDCA在持续改进超声危急值管理制度中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 974-978.
[6] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[7] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[8] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[9] 张丽丽, 陈莉, 余美琴, 聂小艳, 王婧玲, 刘婷. PDCA循环法在超声浅表器官亚专科建设中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 717-721.
[10] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[11] 黄佳, 石华, 张玉国, 胡佳琪, 陈茜. 胎儿左头臂静脉正常与异常超声图像特征及其临床意义[J]. 中华医学超声杂志(电子版), 2023, 20(06): 610-617.
[12] 袁泽, 庄丽. 超声检测胎儿脐动脉和大脑中动脉血流对胎儿宫内窘迫的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 618-621.
[13] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[14] 武壮壮, 张晓娟, 史泽洪, 史瑶, 原韶玲. 超声联合乳腺X线摄影及PR、Her-2预测高级别与中低级别乳腺导管原位癌的价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 631-635.
[15] 孔博, 张璟, 吕珂. 超声技术在复杂腹壁疝诊治中的作用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 670-673.
阅读次数
全文


摘要