切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2018, Vol. 15 ›› Issue (04) : 303 -308. doi: 10.3877/cma.j.issn.1672-6448.2018.04.013

所属专题: 文献

基础研究

诊断超声产生的血流增强效应及肿瘤释药研究
王亚辉1, 益磋1, 冯爽1, 董小小1, 刘政1,()   
  1. 1. 400037 重庆,陆军军医大学第二附属医院超声科
  • 收稿日期:2017-10-23 出版日期:2018-04-01
  • 通信作者: 刘政
  • 基金资助:
    国家重点研发计划数字诊疗装备研发重点专项(2017YFC0107300)

Research of ultrasound vascular effects and drug delivery to tumor

Yahui Wang1, Cuo Yi1, Shuang Feng1, Xiaoxiao Dong1, Zheng Liu1,()   

  1. 1. Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
  • Received:2017-10-23 Published:2018-04-01
  • Corresponding author: Zheng Liu
  • About author:
    Corresponding author: Liu Zheng, Email:
引用本文:

王亚辉, 益磋, 冯爽, 董小小, 刘政. 诊断超声产生的血流增强效应及肿瘤释药研究[J/OL]. 中华医学超声杂志(电子版), 2018, 15(04): 303-308.

Yahui Wang, Cuo Yi, Shuang Feng, Xiaoxiao Dong, Zheng Liu. Research of ultrasound vascular effects and drug delivery to tumor[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2018, 15(04): 303-308.

目的

采用诊断超声激励微泡的方法增强肿瘤组织的血流灌注,增加肿瘤组织局部阿霉素的释放。

方法

选取健康雄性SD大鼠10只,双侧大腿内侧皮下种植Walker-256肿瘤20个,随机配对分为对照组(10例)与超声治疗组(10例)。治疗前后分别进行超声造影,对超声造影图像进行定量分析。治疗后获取部分肿瘤组织后行高效液相色谱法检测肿瘤组织的药物浓度,另外采用冰冻切片观察肿瘤组织内阿霉素的荧光强度。治疗组与对照组定量分析峰值强度(PI)、曲线下面积(AUC)及阿霉素药物质量浓度比较,采用配对t检验。

结果

(1)超声治疗后视觉造影效果中,6个明显增强,4个无明显变化,定量分析PI及AUC明显高于治疗前(PI:75.74±17.67 vs 66.22±16.25,AUC:3354.91±796.15 vs 2937.52±677.51),差异均有统计学意义(t=-5.212、-5.259,P均<0.001);(2)治疗组阿霉素药物质量浓度是对照组的1.2倍[(1.15±0.25)μg/g vs(0.96±0.21)μg/g],差异有统计学意义(t=2.403,P<0.05);(3)各组肿瘤组织光镜下表现:肿瘤细胞排列成条索状,核大深染,治疗组可见血管充血,有少量炎症细胞浸润;(4)激光共聚焦显微镜下可见治疗组肿瘤组织间质中外漏的阿霉素荧光明显多于对照组。

结论

诊断超声激励微泡治疗可增强大鼠Walker-256肿瘤的血流灌注,有助于化疗药物局部释放。

Objective

To improve the chemotherapy drug delivery to tumor by enhancing the tumor vascular perfusion induced by diagnostic ultrasound combined with microbubbles.

Methods

Ten healthy male sprague-dawley (SD) rats with total twenty walker-256 tumors implanted in the two back legs were randomized to the two paired groups: controlled group (C, n=10) and treatment group (T, n=10). Tumors in the controlled group were ultrasonic sham operated, while in the treatment group were treated by diagnostic ultrasound combined with microbubbles. The treatment group were taken contrast-enhanced ultrasound (CEUS) before and after treatment and analyzed the quantitative parameters. The microbubbles used in the treatment and CEUS was a kind of self-made lipid microbubbles called Zhifuxian. The 0.02 ml microbubbles were bolus injected at CEUS, while during treatment, 0.04 ml microbubbles diluted into 1 ml saline solution were injected slowly at constant speed. Flushed by saline solution after treatment, the rats′ tumors were harvested into three parts: one for chemotherapy drug concentration detected by high performance liquid chromatography (HPLC), one for HE detection, and one for Dox fluorescence intensity detected by confocal laser scanning microscopy (CLSM). The peak intensity (PI) values, the area under curve (AUC) values and the Dox concentration of each group were analyzed by pared-samples t test.

Results

(1) The contrast enhanced ultrasound quantitative analysis of the T group: PI value of the tumors before and after treatment were 66.22±16.25 and 75.74±17.67. The AUC values were 2937.52±677.51 and 3354.91±796.15. There was significant statistical difference between them (t=-5.212, -5.259, all P<0.05). (2) The Dox concentration of the T and C groups were (1.15±0.25) ug/g and (0.96±0.21) ug/g. There was significant statistical difference between them (t=2.403, P<0.05). The Dox concentration of the treatment group was 1.2 times of the controlled group. (3) The pathology results of T and C groups: the tumor cells were arranged in cords, with big round deep-stained nucleus. No pathological changes were observed in the controlled group, and there was no significant difference between the two groups. But in the treatment group, tumor vascular congestion and inflammatory cell infiltration could be observed. (4) The confocal laser scanning microscopy (CLSM) detection of the T and C groups: the Dox red fluorescence was distributed in the tumor tissue interstitial, and the fluorescence intensity and distribution area of the treatment group were significant higher than the controlled group.

Conclusions

Diagnostic ultrasound combined with microbubbles treatment could significantly increase the blood perfusion in the walker-256 tumors of SD rats. Taking advantage of this vascular effect, the chemotherapy drug Dox could be delivered much more to the tumor tissue along with circulating bloodstream. With the addition of the sonoporation effect induced by the cavitation of the microbubbles, the chemotherapy drugs could be released much more to the tumor interstitial tissue.

图1~3 Walker-256肿瘤二维及超声造影图像。图1为肿瘤二维图像,黄色虚线勾选的为肿瘤,可见肿瘤呈椭圆形,内部回声不均;图2为同一肿瘤超声治疗前超声造影图像,白色线条勾选的为可变区域,出现微泡灌注(箭头所示);图3为同一肿瘤超声治疗后超声造影图像,白色线条勾选的为可变区域,可见治疗后肿瘤内血流灌注明显增强,在一些治疗前无微泡灌注的区域也出现微泡灌注(箭头所示)
图4,5 Walker-256肿瘤超声造影数据的时间-信号曲线曲线。图4,5分别为同一肿瘤治疗前后超声造影数据的时间-强度曲线,横轴为时间,纵轴为强度,可见治疗后时间-强度曲线最高点明显升高,曲线下降的斜率也更平缓
表1 Walker-256肿瘤大鼠治疗前后超声造影PI与AUC值及Dox药物质量浓度比较(±s
图6~8 肿瘤组织病理图像。图6为对照组肿瘤组织可见肿瘤细胞排列成条状,核大深染(HE ×100);图7为治疗组肿瘤组织内可见肿瘤血管充血(箭头所示,HE ×100);图8为治疗组肿瘤组织内可见少量炎症细胞浸润(箭头所示,HE ×100)
图9~14 对照组与治疗组Dox分布的激光共聚焦成像图。图10~12分别为对照组DAPI、Dox及Merge后的荧光分布图,肿瘤组织内几乎不可见红色荧光;图13~15分别为治疗组DAPI、Dox及Merge后的荧光分布图,其内可见明显红色荧光
[1]
Wood AK,Sehgal CM. A review of low-intensity ultrasound for cancer therapy[J]. Ultrasound Med Biol, 2015, 41(4): 905-928.
[2]
Tomizawa M,Ebara M,Saisho H, et al. Irradiation with ultrasound of low output intensity increased chemosensitivity of subcutaneous solid tumors to an anti-cancer agent[J]. Cancer Lett, 2001, 173(1): 31-35.
[3]
Nomikou N,Li YS,Mchale AP. Ultrasound-enhanced drug dispersion through solid tumours and its possible role in aiding ultrasound-targeted cancer chemotherapy[J]. Cancer Lett, 2010, 288(1): 94-98.
[4]
Galmarini FC,Galmarini CM,Sarchi MI, et al. Heterogeneous distribution of tumor blood supply affects the response to chemotherapy in patients with head and neck cancer[J]. Microcirculation, 2000, 7(6 Pt 1): 405-410.
[5]
乔学研, 陈重, 益磋, 等. 诊断超声联合微泡对兔VX2肿瘤的血流增强效应[J]. 临床超声医学杂志, 2017, 19(4): 217-221.
[6]
Ibsen S,Schutt CE,Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment[J]. Drug Des Devel Ther, 2013, 7: 375-388.
[7]
Lammertink BH,Bos C,Deckers R, et al. Sonochemotherapy: from bench to bedside[J]. Front Pharmacol, 2015, 6: 138.
[8]
Yan F,Li L,Deng Z, et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers[J]. J Control Release, 2013, 166(3): 246-255.
[9]
Li P,Zheng Y,Ran H, et al. Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice[J]. J Control Release, 2012, 162(2): 349-354.
[10]
Sorace AG,Warram JM,Umphrey H, et al. Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer[J]. J Drug Target, 2012, 20(1): 43-54.
[11]
Qin J,Wang TY,Willmann JK. Sonoporation: Applications for Cancer Therapy[J]. Adv Exp Med Biol, 2016, 880: 263-291.
[12]
Mullick CS,Lee T,Willmann JK. Ultrasound-guided drug delivery in cancer[J]. Ultrasonography, 2017, 36(3): 171-184.
[13]
Xiong XX,Qiu XY,Hu DX, et al. Advances in Hypoxia-Mediated Mechanisms in Hepatocellular Carcinoma[J]. Mol Pharmacol, 2017, 92(3): 246-255.
[14]
Mahase S,Rattenni RN,Wesseling P, et al. Hypoxia-Mediated Mechanisms Associated with Antiangiogenic Treatment Resistance in Glioblastomas[J]. Am J Pathol, 2017, 187(5): 940-953.
[15]
Belcik JT,Mott BH,Xie A, et al. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation[J]. Circ Cardiovasc Imaging, 2015, 8(4). pii: e002979.
[16]
Maruo A,Hamner CE,Rodrigues AJ, et al. Nitric oxide and prostacyclin in ultrasonic vasodilatation of the canine internal mammary artery[J]. Ann Thorac Surg, 2004, 77(1): 126-132.
[17]
Belcik JT,Davidson BP,Xie A, et al. Augmentation of Muscle Blood Flow by Ultrasound Cavitation Is Mediated by ATP and Purinergic Signaling[J]. Circulation, 2017, 135(13): 1240-1252.
[18]
章希睿, 张明博, 桑茂栋, 等. 医学超声造影成像的新技术研究进展[J]. 中国生物医学工程学报, 2016, 35(2): 225-233.
[19]
庄华. 超声造影时间强度曲线在腹腔脏器功能及肿瘤灌注成像定量研究中的应用进展[J]. 生物医学工程学杂志, 2011, 28(3): 640-644.
[20]
Sun B,Deng C,Meng F, et al. Robust, active tumor-targeting and fast bioresponsive anticancer nanotherapeutics based on natural endogenous materials[J]. Acta Biomater, 2016, 45: 223-233.
[1] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[2] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[3] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[4] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[5] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[6] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[7] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[8] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[9] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[10] 张妍, 原韶玲, 史泽洪, 郭馨阳, 牛菁华. 小肾肿瘤超声漏诊原因分析新思路[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 500-504.
[11] 席芬, 张培培, 孝梦甦, 刘真真, 张一休, 张璟, 朱庆莉, 孟华. 乳腺错构瘤的临床与超声影像学特征分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 505-510.
[12] 余晓青, 高欣, 罗文培, 杨露. BI-RADS 4类结节患者的乳腺癌风险预测模型[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 217-223.
[13] 钱警语, 郑明明. 《2024意大利妇产科学会非侵入性和侵入性产前诊断指南》解读[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 486-492.
[14] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[15] 陈秀晓, 隋文倩, 王珉鑫, 吴圆圆. 腹股沟斜疝并腹腔游离体超声表现一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 516-517.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?