切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2018, Vol. 15 ›› Issue (12) : 960 -966. doi: 10.3877/cma.j.issn.1672-6448.2018.12.014

所属专题: 文献

基础研究

纳米微泡搭载siRNA联合超声靶向破碎技术干扰胶质瘤细胞增殖的体外实验研究
蔡文斌1, 吕苇1, 段云友1, 王佳1,()   
  1. 1. 710038 西安,空军军医大学第二附属医院(唐都医院)
  • 收稿日期:2017-10-13 出版日期:2018-12-01
  • 通信作者: 王佳
  • 基金资助:
    国家自然科学基金(81301227)

In vitro effect of nanobubbles carrying siRNA combined with ultrasound targeted destruction on glioma cell proliferation

Wenbin Cai1, Wei Lyu1, Yunyou Duan1, Jia Wang1,()   

  1. 1. Department of Ultrasound, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
  • Received:2017-10-13 Published:2018-12-01
  • Corresponding author: Jia Wang
  • About author:
    Corresponding author: Wang Jia, Email:
引用本文:

蔡文斌, 吕苇, 段云友, 王佳. 纳米微泡搭载siRNA联合超声靶向破碎技术干扰胶质瘤细胞增殖的体外实验研究[J]. 中华医学超声杂志(电子版), 2018, 15(12): 960-966.

Wenbin Cai, Wei Lyu, Yunyou Duan, Jia Wang. In vitro effect of nanobubbles carrying siRNA combined with ultrasound targeted destruction on glioma cell proliferation[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2018, 15(12): 960-966.

目的

以纳米微泡超声造影剂作为基因治疗中小干扰RNA(siRNA)的载体,探讨纳米微泡搭载siRNA联合超声靶向破碎技术对siRNA的转染及干扰效率以及对抑制胶质瘤肿瘤细胞生长、提高肿瘤细胞凋亡水平的作用。

方法

薄膜水化法制备粒径均一的纳米微泡,通过生物素-亲和素系统连接纳米微泡和siRNA,对胶质瘤细胞进行转染。将细胞分为纳米微泡-羧基荧光素(FAM)-乱序阴性对照siRNA(scrambled siRNA,SCR)-超声辐照组(NB-FAM-SCR-US),纳米微泡-FAM-SCR-无超声辐照组(NB-FAM-SCR)和正常细胞组,利用激光共聚焦显微镜检测各组细胞siRNA的转染效率;将细胞分为纳米微泡-siRNA-超声辐照组(NB-siRNA-US),纳米微泡-siRNA-无超声辐照组(NB-siRNA),纳米微泡-SCR-超声辐照组(NB-SCR-US),实时荧光定量PCR(Real-time PCR)及蛋白质免疫印迹(Western blot)检测各组细胞siRNA对目的基因的干扰效率;CCK-8及Annexin-V检测各组肿瘤细胞的活性及细胞凋亡率。

结果

通过薄膜水化法制备的纳米微泡平均粒径为(663.9±102.5)nm,纳米微泡-siRNA的平均粒径为(707.0±127.6)nm。激光共聚焦显微镜检测发现,与NB-FAM-SCR组相比,NB-FAM-SCR-US组可在细胞核(蓝色荧光)周边观测到更多的绿色荧光,正常细胞组仅可观测到细胞核的蓝色荧光,未见绿色荧光。Real-time PCR检测发现,与NB-SCR-US组相比,NB-siRNA-US组和NB-siRNA组IDH1基因的表达在mRNA水平均降低,差异具有统计学意义(t=-20.35、-4.27,P均<0.01);而NB-siRNA-US组目的基因表达降低更为显著,与NB-siRNA组相比,差异具有统计学意义(t=-12.34,P<0.01)。Western blot检测发现,与NB-SCR-US组和NB-siRNA组相比,NB-siRNA-US组的IDH1基因表达水平明显减低。CCK-8及Annexin-V检测各组细胞活性及细胞凋亡率,结果显示与NB-siRNA组和NB-SCR-US组相比,NB-siRNA-US组的细胞活性明显减低,细胞凋亡率明显增高,差异有统计学意义(CCK-8组:t=-13.52,-31.55,P<0.01;Annexin-V组:t=8.30、9.79,P<0.01)。

结论

纳米微泡搭载siRNA联合超声靶向破碎技术,能有效提高siRNA的转染及干扰效率,可抑制肿瘤细胞生长,为胶质瘤的非侵入性治疗提供了新思路。

Objective

To evaluate the ability of ultrasound contrast agent nanobubbles as carriers of siRNA combined with ultrasound targeted nanobubble destruction to improve the siRNA transfection and interference efficiency in glioma cells, so as to achieve the effect of inhibiting tumor cell growth.

Methods

Nanobubbles were fabricated using the thin-film hydration method. Nanobubbles carrying siRNA were fabricated using the biotin-avidin system. After siRNA was transfected into glioma cells, confocal laser scanning microscopy was applied to assess the transfection efficiency in three groups of cells: nanobubbles-carboxyfluorescein-scrambled siRNA-ultrasound (NB-FAM-SCR-US), NB-FAM-SCR, and normal control. NB-siRNA-US (containing siRNA specific the target gene), NB-siRNA, and NB-SCR-US were used for subsequent experiments. Real-time PCR and Western blot were used to assess interference efficiency. Cell viability and apoptosis were evaluated by CCK-8 and annexin-V analysis.

Results

The particle size of nanobubbles fabricated by the thin film hydration method was (663.9±102.5) nm; the particle size of nanobubbles carrying siRNA was (707.0±127.6) nm. The results of laser confocal microscopy showed that the transfection efficiency of siRNA was successfully enhanced by ultrasound irradiating nanobubbles. Real-time PCR and Western blot showed that the expression of the target gene was significantly reduced in the NB-siRNA-US group (real-time PCR: t=-12.34, -20.35, P<0.01). In the CCK-8 and annexin-V experiments, the proliferation of cells in the NB-siRNA-US group decreased and apoptosis increased (CCK-8: t=-13.52, -31.55, P<0.01; annexin-V: t=8.30, 9.79, P<0.01).

Conclusion

SiRNA transfection and interference efficiency can be improved by ultrasound irradiating nanobubbles to achieve the aim of inhibiting the growth of glioma cells, which provides a new strategy for non-invasive treatment of gliomas.

表1 IDH1- siRNA和阴性对照siRNA的序列
表2 IDH1和GAPDH引物序列
图1~9 激光共聚焦显微镜检测细胞转染siRNA的效率。图1~3为纳米微泡-羧基荧光素(FAM)-乱序阴性对照siRNA(SCR)-超声辐照组(NB-FAM-SCR-US组)的细胞核染色图(DAPI染色,×200),图1见细胞核染色显示为蓝色荧光,图2见细胞转染了FAM-SCR显示为绿色荧光,图3为图1和图2的合并;图4~6为纳米微泡-FAM-SCR-无超声辐照组(NB-FAM-SCR组)的细胞核染色图(DAPI染色,×200),图4见细胞核染色显示为蓝色荧光,图5见少量细胞转染了FAM-SCR显示为微量绿色荧光,图6为图4和图5的合并;图7~9为正常细胞组的细胞核染色图(DAPI染色,×200),图7见细胞核染色显示为蓝色荧光,图8未见细胞转染FAM-SCR无绿色荧光,图9为图7和图8的合并
图10,11 蛋白免疫印迹(Western blot)在蛋白水平检测目的基因表达水平。图10从左至右依次为纳米微泡-siRNA-超声辐照组,纳米微泡-siRNA-无超声辐照组和纳米微泡-乱序阴性对照siRNA(SCR)-超声辐照组目的基因蛋白表达水平,从右至左各组基因蛋白表达水平依次降低,纳米微泡-siRNA-超声辐照组明显低于另外2组。图11为纳米微泡-siRNA-超声辐照组,纳米微泡-siRNA-无超声辐照组和纳米微泡-SCR-超声辐照组3组内参蛋白甘油醛-3-磷酸脱氢酶(GAPDH)表达水平,3组间未见明显差异
图12~14 Annexin V-FITC/PI双染流式细胞仪检测细胞凋亡率。图12为纳米微泡-siRNA-超声辐照组(NB-siRNA-US组)细胞凋亡结果;图13为纳米微泡-siRNA-无超声辐照组(NB-siRNA组)细胞凋亡结果;图14为纳米微泡-乱序阴性对照siRNA(SCR)-超声辐照组(NB-SCR-US组)细胞凋亡结果
表3 3组细胞活性及细胞凋亡率检测结果(±s,%)
1
Leng Q, Woodle MC, Mixson AJ. Targeted Delivery of siRNA Therapeutics to Malignant Tumors [J]. J Drug Deliv, 2017, 2017: 6971297.
2
Truong NP, Gu W, Prasadam I, et al. An influenza virus-inspired polymer system for the timed release of siRNA [J]. Nat Commun, 2013, 4: 1902.
3
汪朝霞, 王志刚. 超声微泡造影剂携基因或药物治疗研究[J]. 中国介入影像与治疗学, 2006, 3(4): 306-308.
4
Zhou Y, Yang K, Cui J, et al. Controlled permeation of cell membrane by single bubble acoustic cavitation [J]. J Control Release, 2012, 157(1): 103-111.
5
Cai WB, Yang HL, Zhang J, et al. The Optimized Fabrication of Nanobubbles as Ultrasound Contrast Agents for Tumor Imaging [J]. Sci Rep, 2015, 5: 13725.
6
Yang H, Cai W, Xu L, et al. Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor [J]. Biomaterials, 2015, 37: 279-288.
7
杨恒丽, 蔡文斌, 张莉, 等. 纳米级分子靶向超声造影剂的制备及其体外肿瘤靶向性实验研究[J]. 中国超声医学杂志, 2016, 32(4): 367-370.
8
Aronovich EL, Mcivor RS, Hackett PB. The Sleeping Beauty transposon system: a non-viral vector for gene therapy [J]. Hum Mol Genet, 2011, 20(R1): R14-R 20.
9
Huang S, Kamihira M. Development of hybrid viral vectors for gene therapy [J]. Biotechnol Adv, 2013, 31(2): 208-223.
10
赵晓乐, 孔晓军, 李剑勇. 可递送siRNA的非病毒纳米载体的设计[J]. 国际药学研究杂志, 2016, 43(4): 677-681.
11
Li W, Hu ZF, Chen B, et al. Response of C2C12 myoblasts to hypoxia: the relative roles of glucose and oxygen in adaptive cellular metabolism [J]. Biomed Res Int, 2013, 2013: 326346.
12
Ballarin-Gonzalez B, Howard KA. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions [J]. Adv Drug Deliv Rev, 2012, 64(15): 1717-1729.
13
陈中华, 朱德生, 李军, 等. 非病毒siRNA载体研究进展[J]. 中国药理学通报, 2015, 31 (7): 910-914.
14
Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment [J]. Proc Natl Acad Sci U S A, 1998, 95(8): 4607-4612.
15
Oeffinger BE, Wheatley MA. Development and characterization of a nano-scale contrast agent [J]. Ultrasonics, 2004, 42(1-9): 343-347.
16
Calvert AE, Chalastanis A, Wu Y, et al. Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation [J]. Cell Rep, 2017, 19(9): 1858-1873.
17
Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles [J]. Nature, 2003, 423(6936): 153-156.
18
Ohl CD, Arora M, Ikink R, et al. Sonoporation from jetting cavitation bubbles [J]. Biophys J, 2006, 91(11): 4285-4295.
19
Wu G, Mikhailovsky A, Khant HA, et al. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells [J]. J Am Chem Soc, 2008, 130(26): 8175-8177.
20
Wu J. Shear stress in cells generated by ultrasound [J]. Prog Biophys Mol Biol, 2007, 93(1-3): 363-373.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[4] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[5] 吕琦, 惠品晶, 丁亚芳, 颜燕红. 颈动脉斑块易损性的超声造影评估及与缺血性卒中的相关性研究[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1040-1045.
[6] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[7] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[8] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[9] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[10] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[11] 丁雷, 罗文, 杨晓, 庞丽娜, 张佩蒂, 刘海静, 袁佳妮, 刘瑾. 高帧频超声造影在评价C-TIRADS 4-5类甲状腺结节成像特征中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(09): 887-894.
[12] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[13] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[14] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
阅读次数
全文


摘要