切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (12) : 937 -942. doi: 10.3877/cma.j.issn.1672-6448.2019.12.010

所属专题: 文献

心血管超声影像学

实时三维斑点追踪技术评价潜水员水肺潜水后左心室收缩功能改变
钱胜利1, 杨莉1,(), 杜锐1, 刘畅1, 李延1, 高菡静1, 梅枭雄1   
  1. 1. 430010 武汉,中国人民解放军第一六一医院特诊科
  • 收稿日期:2018-03-17 出版日期:2019-12-01
  • 通信作者: 杨莉
  • 基金资助:
    解放军超声医学专业委员会科研激励基金(JLJJ2016-005)

Evaluation of left ventricular systolic function changes in divers after scuba diving by three-dimensional speckle tracking imaging

Shengli Qian1, Li Yang1,(), Rui Du1, Chang Liu1, Yan Li1, Hanjing Gao1, Xiaoxiong Mei1   

  1. 1. Department of Special Diagnosis, Chinese PLA 161 Hospital, Wuhan 430010, China
  • Received:2018-03-17 Published:2019-12-01
  • Corresponding author: Li Yang
  • About author:
    Corresponding author: Yang Li, Email:
引用本文:

钱胜利, 杨莉, 杜锐, 刘畅, 李延, 高菡静, 梅枭雄. 实时三维斑点追踪技术评价潜水员水肺潜水后左心室收缩功能改变[J]. 中华医学超声杂志(电子版), 2019, 16(12): 937-942.

Shengli Qian, Li Yang, Rui Du, Chang Liu, Yan Li, Hanjing Gao, Xiaoxiong Mei. Evaluation of left ventricular systolic function changes in divers after scuba diving by three-dimensional speckle tracking imaging[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(12): 937-942.

目的

应用实时三维斑点追踪技术评价潜水员水肺潜水后左心室收缩功能的改变。

方法

对60例健康潜水员潜水前及佩戴自携式水下呼吸器恒温潜水11 m、60 min后即刻、1 d、3 d分别测量心率、血压[收缩压(SBP)和舒张压(DBP)]、血氧饱和度(SaO2),同时行常规超声心动图检查。应用三维斑点追踪技术分别获取潜水前及潜水后即刻、1 d、3 d左心室舒张末容积(LVEDV)、收缩末容积(LVESV)、心输出量(CO)、左心室射血分数(LVEF)及左心室三维应变参数,包括左心室整体纵向应变(LVGLS)、整体圆周应变(LVGCS)、整体面积应变(LVGAS)、整体径向应变(LVGRS)。比较潜水前后常规参数及左心室三维应变参数差异。

结果

与潜水前比较,水肺潜水后即刻LVEF无明显改变,SBP、SaO2、LVEDV、LVESV、LVGCS、LVGRS虽稍降低,但差异均无统计学意义,而DBP升高,心率、CO、LVGLS、LVGAS均降低,且差异均有统计学意义(t=-3.13,P=0.007;t=9.609,P<0.001;t=2.597,P=0.020;t=-3.877,P=0.008;t=-15.715,P<0.001);潜水后1 d,DBP已基本恢复至潜水前水平,但心率、CO、LVGLS、LVGAS仍降低,且差异仍均有统计学意义(t=2.772,P=0.021;t=4.116,P=0.001;t=-2.736,P=0.018;t=-10.382,P<0.001);潜水后3 d,上述各指标均恢复至潜水前水平。

结论

水肺恒温潜水11 m、60 min后潜水员的部分心血管指标会发生短期的细微改变。实时三维斑点追踪技术可发现左心室收缩功能细微改变,其动态定量评估潜水后左心室收缩功能,对指导潜水员进行科学潜水训练具有重要的临床意义。

Objective

To assess the changes of left ventricular systolic function in divers after scuba diving by three-dimensional tracking imaging.

Methods

The heart rate (HR), blood pressure [systolic blood pressure (SBP) and diastolic blood pressure (DBP)], and oxygen saturation (SaO2) were measured in 60 healthy divers before, immediately after, and 1 d and 3 d after scuba constant temperature diving to a depth of 11 metres for 60 min, respectively, and conventional echocardiography was performed at the same time. Three-dimensional tracking imaging was applied to obtain the left ventricular diastolic volume (LVEDV), left ventricular systolic volume (LVESV), cardiac output (CO), left ventricular ejection fraction (LVEF), and left ventricular three-dimensional strain parameters including the global longitudinal strain (LVGLS), global circumferential strain (LVGCS), global area strain (LVGAS), and global radial strain (LVGRS) before, immediately after, and 1 d and 3 d after scuba diving. The differences of routine and left ventricular three-dimensional strain parameters were compared before and after scuba diving.

Results

Compared with the parameters before scuba diving, there was no significant change in the LVEF; the SBP, SaO2, LVEDV, LVESV, LVGCS, and LVGRS decreased slightly (with no significant changes); and DBP significantly increased, and the HR, CO, LVGLS, and LVGAS significantly decreased immediately after scuba diving (t=-3.13, P=0.007; t=9.609, P<0.001; t=2.597, P=0.020; t=-3.877, P=0.008; t=-15.715, P<0.001). At 1 d after scuba diving, DBP was restored to the pre-diving level, but the HR, CO, LVGLS, and LVGAS were still significantly lower (t=2.772, P=0.021; t=4.116, P=0.001; t=-2.736, P=0.018; t=-10.382, P<0.001). At 3 d after scuba diving, all the above parameters were recovered to the pre-dive levels.

Conclusion

After scuba constant temperature diving to a depth of 11 metres for 60 min, some of the cardiovascular indicators of divers change slightly in a short term. Three-dimensional tracking imaging can find the slight changes in left ventricular systolic function and quantitatively evaluate the left ventricular systolic function after scuba diving, having important clinical value in guiding divers for scientific diving training.

表1 潜水前与潜水后常规参数比较(±s
表2 潜水前与潜水后左心室三维应变参数比较(%,±s
图1 潜水前(a)、潜水后(b)左心室三维应变牛眼图。自左至右分别为左心室整体纵向应变、整体圆周应变、整体面积应变、整体径向应变。潜水后左心室整体纵向应变、整体圆周应变、整体面积应变、整体径向应变均不同程度降低
图2 观察者内测量左心室整体纵向应变(a)、整体圆周应变(b)、整体面积应变(c)、整体径向应变(d)的Bland-Altman分析图
图3 观察者间测量左心室整体纵向应变(a)、整体圆周应变(b)、整体面积应变(c)、整体径向应变(d)的Bland-Altman分析图
[1]
陶恒沂.潜水医学. 7版. 北京: 高等教育出版社, 2005: 53-74.
[2]
Boussuges A, Blanc F, Carturan D. Hemodynamic changes induced by recreational scuba diving. Chest, 2006, 129(5): 1337-1343
[3]
Castagna O, Gempp E, Poyet R, et al. Cardiovascular Mechanisms of Extravascular Lung Water Accumulation in Divers. Am J Cardiol, 2017, 119(6): 929-932.
[4]
金玲,陈飞,黄惠团.模拟大深度饱和潜水对潜水员超声心动图的影响.解放军预防医学杂志, 2011, 29(6): 429-430.
[5]
Marabotti C, Scalzini A, Menicucci D, et al. Cardiovascular changes during SCUBA diving: an underwater Doppler echocardiographic study. Acta Physiol, 2013, 209(1): 62-68.
[6]
Peacher DF, Martina SD, Otteni CE, et al. Immersion pulmonary edema and comorbidities: case series and updated review. Med Sci Sports Exerc, 2015, 47(6): 1128-1134.
[7]
Seo Y, Ishizu T, Aomuma K.Current Status of 3-Dimentional Speckle Tracking Echocardiography: A Review from Our Experiences. J Cardiovasc Ultrasound, 2014, 22(2): 49-57.
[8]
Caspar T, Fichot M, Ohana M, et al. Late Detection of Left Ventricular Dysfunction Using Two-Dimensional and Three-Dimensional Speckle-Tracking Echocardiography in Patients with History of Nonsevere Acute Myocarditis. J Am Soc Echocardiogr, 2017, 30(8): 756-762.
[9]
Yamada M, Takahashi K, Kobayashi M, et al. Mechanismys of Left Ventricular Dysfunction Assessed by Layer-Specific Strain Analysis in Patients With Repaired Tetralogy of Fallot. Circ J, 2017, 81(6): 846-854.
[10]
Satriano A, Heydari B, Narous M, et al. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography. Int J Cardiovasc Imaging, 2017, 33(12): 1979-1992.
[11]
钱胜利,杨莉,高菡静, 等.三种超声斑点追踪技术评价正常人左心室心肌应变.中国医学影像技术杂志, 2015, 31(6): 853-858.
[12]
Henein MY, Gibson DG. Normal long axis function. Heart, 1999, 81(2): 111-113.
[13]
Oyama-Manabe N, Ishimori N, Sugimori H, et al. Identification and further differentiation of subendocardial and transmural myocardial infarction by fast strain-encoded (SENC) magnetic resonance imaging at 3.0 tesla. Eur Radiol, 2011, 21(11): 2362-2368.
[14]
Cho EJ, Park SJ, Kim EK, et al. Effects of increased left ventricular wall thickness on the myocardium in severe aortic stenosis with normal left ventricular ejection fraction: Two- and three-dimensional multilayer speckle tracking echocardiography. Echocardiography, 2017, 34(4): 511-522.
[15]
赵志玉,陈金玲,周青, 等. 心肌纵向分层应变参数评价冠心病患者左心室局部及整体收缩功能. 中华超声影像学杂志, 2016, 25(1): 1-6.
[16]
Ozawa K, Funabashi N, Kamata T, et al. Inter- and intraobserver consistency in LV myocardial strain measurement using a novel multi-layer technique in patients with severe aortic stenosis and preserved LV ejection fraction. Int J Cardiol, 2017, 228(2): 687-693.
[17]
Kleijn SA, Aly MF, Terwee CB, et al. Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain . J Am Soc Echocardiography, 2011, 24(3): 314-321.
[18]
姚静,许迪,戴阳, 等.面积应变评价正常人左心室收缩模式及功能.中华超声影像学杂志, 2013, 22(1): 1-5.
[1] 李沅芝, 李一丹, 丁雪晏, 郭迪晨, 叶晓光, 孙兰兰, 魏丽群, 朱维维, 王江涛, 吕秀章. 无创左心室压力-应变环评价阵发性心房颤动患者左心室心肌做功的价值[J]. 中华医学超声杂志(电子版), 2022, 19(10): 1071-1076.
[2] 杨喆, 尹立雪, 王斯佳, 罗素秋, 赵欣, 周乔, 苏江, 邬锐. 超声血流向量成像对痛风患者左心室能量损耗的初步评价[J]. 中华医学超声杂志(电子版), 2022, 19(06): 527-534.
[3] 张易薇, 朱双双, 谢雨霁, 孙薇, 朱业, 吴纯, 李玉曼, 谢明星, 张丽. 组织运动二尖瓣环位移对新型冠状病毒肺炎患者预后的预测价值[J]. 中华医学超声杂志(电子版), 2021, 18(12): 1153-1157.
[4] 王玉琳, 尹立雪, 李梅, 吴越, 郭智宇. 三维斑点追踪成像对早发性卵巢功能不全患者左心室心肌收缩功能的评价[J]. 中华医学超声杂志(电子版), 2021, 18(06): 590-596.
[5] 严霜霜, 邓晓奇, 熊峰, 王淑珍, 张丽娟, 赵若寒, 黄晓凤. 二维斑点追踪技术评价左束支区域起搏早期左心室收缩功能及同步性[J]. 中华医学超声杂志(电子版), 2021, 18(04): 368-374.
[6] 王伟, 王岳恒, 白晖, 周金玲, 常青. 血流向量成像技术评价慢性肾脏病合并舒张功能不全患者左心室能量损耗[J]. 中华医学超声杂志(电子版), 2021, 18(04): 361-367.
[7] 李慧, 顾敏, 胡奕然, 齐红霞, 刘偈, 王浩. 四维斑点追踪联合超声心动图分层应变技术评价不同部位起搏对左心室功能及同步性的影响[J]. 中华医学超声杂志(电子版), 2021, 18(02): 135-142.
[8] 蔡怀秋, 李小璐, 董晓秋, 李硕, 郝豪皓, 董丹. 心肌肥厚性疾病患者左心室扭转与心肌纤维化的相关性研究[J]. 中华医学超声杂志(电子版), 2020, 17(08): 759-764.
[9] 柴亮, 赵子平, 曹亚云, 包涵, 高照, 刘晓晓. 超声心动图评估急性脑损伤患者的左心室功能[J]. 中华医学超声杂志(电子版), 2019, 16(04): 301-305.
[10] 王海永, 童明辉, 吴婷婷, 雷海燕, 王佳冰, 丁新华. 二维斑点追踪技术评价川崎病患儿左心室收缩功能[J]. 中华医学超声杂志(电子版), 2018, 15(09): 692-699.
[11] 侯广立, 袁丽君, 石瑞静, 赵联璧, 李者龙, 孙汶齐. 环磷酰胺致小鼠心脏功能损伤超声评价及其与血清外泌体miRNA的相关性[J]. 中华医学超声杂志(电子版), 2018, 15(06): 469-472.
[12] 王佳玉, 毛宇航, 田洁, 黄凌霙, 王译斌, 张隽, 孙睿颖, 邓又斌. 心脏超声造影评价恶性肿瘤化疗患者左心室射血分数与左心室容积[J]. 中华医学超声杂志(电子版), 2018, 15(06): 426-432.
[13] 韩红生, 郑哲岚, 王群苹, 程俊伟. 二维斑点追踪技术评价2型糖尿病合并微血管病变患者左心室收缩功能的价值[J]. 中华医学超声杂志(电子版), 2018, 15(03): 178-183.
[14] 陈银花, 陈勇, 马勇, 袁静, 于海迪, 杨菲, 吴秀秀. 分层应变技术评价非ST段抬高性急性冠状动脉综合征患者左心室心肌各层收缩功能的变化[J]. 中华医学超声杂志(电子版), 2017, 14(12): 919-926.
[15] 贾春梅, 常荷, 薛影, 梁永超, 徐宇雪, 王健. 二维斑点追踪成像技术评价腹膜透析对尿毒症患者左心室功能影响的临床研究[J]. 中华医学超声杂志(电子版), 2017, 14(10): 771-778.
阅读次数
全文


摘要