切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (03) : 195 -199. doi: 10.3877/cma.j.issn.1672-6448.2022.03.002

腹部超声影像学

基于深度学习的肝外伤超声图像自动识别模型
王妍洁1, 罗渝昆2,(), 何雪磊3, 宋青2, 王坤4, 马骏1, 韩鹏2, 李朔朔2, 康林立2   
  1. 1. 100853 北京,解放军总医院第一医学中心超声诊断科;100853 北京,解放军医学院
    2. 100853 北京,解放军总医院第一医学中心超声诊断科
    3. 100190 北京,中科院自动化研究所分子影像重点实验室;710127 西安,西北大学信息科学与技术学院
    4. 100190 北京,中科院自动化研究所分子影像重点实验室
  • 收稿日期:2021-12-08 出版日期:2022-03-01
  • 通信作者: 罗渝昆
  • 基金资助:
    解放军总医院临床科研扶持基金(ZH19021); 中国博士后基金面上项目(2018M643876); 国家自然科学基金(81971635)

An automatic deep learning-based recognition model for liver trauma ultrasound images

Yanjie Wang1, Yukun Luo2,(), Xuelei He3, Qing Song2, Kun Wang4, Jun Ma1, Peng Han2, Shuoshuo Li2, Linli Kang2   

  1. 1. Department of Ultrasound, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Chinese PLA Medical School, Beijing 100853, China
    2. Department of Ultrasound, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
    3. CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Information Sciences and Technology, Northwest University, Xi'an 710127, China
    4. CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2021-12-08 Published:2022-03-01
  • Corresponding author: Yukun Luo
引用本文:

王妍洁, 罗渝昆, 何雪磊, 宋青, 王坤, 马骏, 韩鹏, 李朔朔, 康林立. 基于深度学习的肝外伤超声图像自动识别模型[J]. 中华医学超声杂志(电子版), 2022, 19(03): 195-199.

Yanjie Wang, Yukun Luo, Xuelei He, Qing Song, Kun Wang, Jun Ma, Peng Han, Shuoshuo Li, Linli Kang. An automatic deep learning-based recognition model for liver trauma ultrasound images[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(03): 195-199.

目的

建立基于深度学习的卷积神经网络肝损伤模型(CNLDM),并评估其对肝实质挫裂伤的诊断价值。

方法

通过动物实验获得2009张含有肝实质挫裂伤超声图像及1302张正常肝超声图像,作为模型的训练集和验证集。回顾性收集2015年1月至2021年4月解放军总医院第一医学中心确诊存在肝实质挫裂伤的超声图像153张,以及81张不含肝实质挫裂伤的肝超声图像,作为模型的外部测试集。6名不同年资医师分别对测试集图像数据进行判读。使用受试者操作特征(ROC)曲线及决策曲线分析(DCA)检验模型效能,比较不同年资医师与CNLDM模型预测肝实质挫裂伤的敏感度、特异度、准确性、阴性预测值及阳性预测值。

结果

CNLDM模型诊断效能(敏感度为80%,特异度为77%,阳性预测值为87%,阴性预测值为66%)优于低年资医师组(敏感度为61%,特异度为75%,阳性预测值为82%,阴性预测值为51%),略差于高年资医师组(敏感度为84%,特异度为86%,阳性预测值为92%,阴性预测值为75%),差异具有统计学意义(H=15.306,P<0.001;H=3.289,P<0.001),而模型效能与中年资医师组接近,差异无统计学意义(P>0.05)。DCA显示模型在阈值0.4~0.6之间有较好的测试集收益。

结论

基于超声的人工智能模型可以较为准确地区分正常肝与含有肝实质挫裂伤的异常肝,对进一步指导临床诊治工作具有重要的意义。

Objective

To establish a convolutional neural network-based liver injury diagnostic model (CNLDM) and evaluate its diagnostic value for liver trauma.

Methods

A total of 2009 ultrasound images of liver trauma and 1302 ultrasound images of normal liver were obtained through animal experiments, which were used as the training set and validation set of the model. As an external test set of the model, a retrospective collection of 153 ultrasound images of liver trauma and 81 liver ultrasound images without liver trauma was performed at the First Medical Center of Chinese PLA General Hospital from January 2015 to April 2021. Six doctors of different seniority interpreted the external test set, respectively. Receiver operating characteristic curve (ROC) analysis and decision curve analysis (DCA) were used to test the performance of the model, and the differences between the six physicians and CNLDM model in sensitivity, specificity, accuracy, negative predictive value, and positive predictive value of liver trauma were compared.

Results

The diagnostic performance of the CNLDM (sensitivity, 80%; specificity, 77%; positive predictive value, 87%; negative predictive value, 66%) was better than that of the junior physician group (sensitivity, 61%; specificity, 75%; positive predictive value, 82%; negative predictive value, 51%) (H=15.306, P<0.001), inferior to that of the senior physician group (sensitivity, 84%; specificity, 86%; positive predictive value, 92%; negative predictive value, 75%) (H=3.289, P<0.001), and close to that of the medium physician group (P>0.05). DCA showed that the model had good test set returns when the threshold was between 0.4-0.6.

Conclusion

The artificial intelligence-based ultrasound model can accurately distinguish normal liver from abnormal liver with trauma, which is of great significance for further guiding clinical diagnosis and treatment.

图1 卷积神经网络肝损伤模型构建示意图
图2 卷积神经网络肝损伤模型(CNDLM)数据分配及模型整体框架图
图3 卷积神经网络肝损伤模型(CNLDM)与不同年资医师组在测试集中的效能分析。蓝色曲线为CNLDM模型预测效能受试者操作特征曲线。图中三个点为低、中、高年资医师组诊断的平均效能(
xˉ
±s
图4 卷积神经网络肝损伤模型的决策曲线分析。对于测试集曲线,阈值在0.4~0.6之间,模型有高于0.6的左右的收益
表1 CNLDM模型与不同年资医师识别肝实质挫裂伤的效能对比
图5 模型案例的输出结果可视化。热图是以模型计算的最后一层特征层,即高维特征与输入图像叠加得到的可视化图像,其中红色部分为模型重点关注区域,即模型经过学习,预测图像中存在肝创伤概率较高的区域
1
van As AB, Millar AJW. Management of paediatric liver trauma [J]. Pediatr Surg Int, 2017, 33(4): 445-453.
2
Buci S, Torba M, Gjata A, et al. The rate of success of the conservative management of liver trauma in a developing country [J]. World J Emerg Surg, 2017, 12: 24.
3
Padalino P, Bomben F, Chiara O, et al. Healing of blunt liver injury after non-operative management: role of ultrasonography follow-up [J]. Eur J Trauma Emerg Surg, 2009, 35(4): 364-370.
4
Badger SA, Barclay R, Campbell P, et al. Management of liver trauma [J]. World J Surg, 2009, 33(12): 2522-2537.
5
Stengel D, Bauwens K, Rademacher G, et al. Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma [J]. Cochrane Database Syst Rev, 2015, 2015(9): CD004446.
6
Chan HP, Samala RK, Hadjiiski LM, et al. Deep learning in medical image analysis [J]. Adv Exp Med Biol, 2020, 1213: 3-21.
7
Pehrson LM, Lauridsen C, Nielsen MB. Machine learning and deep learning applied in ultrasound [J]. Ultraschall Med, ,2018, 39(4): 379-381.
8
Brattain LJ, Telfer BA, Dhyani M, et al. Machine learning for medical ultrasound: status, methods, and future opportunities [J]. Abdom Radiol (NY), 2018, 43(4): 786-799.
9
Lai S, Xu L, Liu K, et al. Recurrent convolutional neural networks for text classification [C]. 29th AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 2015.
10
Xie H N, Wang N, He M, et al. Using deep‐learning algorithms to classify fetal brain ultrasound images as normal or abnormal [J]. Ultrasound Obstet Gynecol, 2020, 56(4): 579-587.
11
Xue L, Jiang Z, Fu T, et al. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis [J]. Eur Radiol, 2020, 30(5): 2973-2983.
12
Zhou R, Fenster A, Xia Y, et al. Deep learning‐based carotid media‐adventitia and lumen‐intima boundary segmentation from three‐dimensional ultrasound images [J]. Med Phys, 2019, 46(7): 3180-3193.
13
Karimi D, Zeng Q, Mathur P, et al. Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images [J]. Med Image Anal, 2019, 57: 186-196.
14
Jin Z, Zhu Y, Zhang S, et al. Ultrasound computer-aided diagnosis (CAD) based on the thyroid imaging reporting and data system (TI-RADS) to distinguish benign from malignant thyroid nodules and the diagnostic performance of radiologists with different diagnostic experience [J]. Med Sci Monit, 2020, 26: e918452.
15
Shia W, Lin L, Chen D. Classification of malignant tumours in breast ultrasound using unsupervised machine learning approaches [J]. Sci Rep, 2021, 11(1): 1-11.
16
Kuo C, Chang C, Liu K, et al. Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning [J]. NPJ Digit Med, 2019, 2: 29.
17
Liu F, Liu D, Wang K, et al. Deep learning radiomics based on contrast-enhanced ultrasound might optimize curative treatments for very-early or early-stage hepatocellular carcinoma patients [J]. Liver Cancer, 2020, 9(4): 397-413.
18
Liu D, Liu F, Xie X, et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound [J]. Eur Radiol, 2020, 30(4): 2365-2376.
19
Gondek S, Schroeder ME, Sarani B. Assessment and resuscitation in trauma management [J]. Surg Clin North Am, 2017, 97(5): 985-998.
20
Schembari E, Sofia M, Latteri S, et al. Blunt liver trauma: effectiveness and evolution of non-operative management (NOM) in 145 consecutive cases [J]. Updates Surg, 2020, 72(4): 1065-1071.
21
Parra-Romero G, Contreras-Cantero G, Orozco-Guibaldo D, et al. Trauma abdominal: experiencia de 4961 casos en el occidente de México [J]. Cir Cir, 2019, 87(2): 183-189.
22
战术战伤救治中的超声技术应用专家共识 [J/CD]. 中华医学超声杂志(电子版), 2019, 16(12): 892-898.
23
Recht MP, Dewey M, Dreyer K, et al. Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations [J]. Eur Radiol, 2020, 30(6): 3576-3584.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[4] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[5] 吕琦, 惠品晶, 丁亚芳, 颜燕红. 颈动脉斑块易损性的超声造影评估及与缺血性卒中的相关性研究[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1040-1045.
[6] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[7] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[8] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[9] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[10] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[11] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[12] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[13] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
阅读次数
全文


摘要