1 |
van As AB, Millar AJW. Management of paediatric liver trauma [J]. Pediatr Surg Int, 2017, 33(4): 445-453.
|
2 |
Buci S, Torba M, Gjata A, et al. The rate of success of the conservative management of liver trauma in a developing country [J]. World J Emerg Surg, 2017, 12: 24.
|
3 |
Padalino P, Bomben F, Chiara O, et al. Healing of blunt liver injury after non-operative management: role of ultrasonography follow-up [J]. Eur J Trauma Emerg Surg, 2009, 35(4): 364-370.
|
4 |
Badger SA, Barclay R, Campbell P, et al. Management of liver trauma [J]. World J Surg, 2009, 33(12): 2522-2537.
|
5 |
Stengel D, Bauwens K, Rademacher G, et al. Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma [J]. Cochrane Database Syst Rev, 2015, 2015(9): CD004446.
|
6 |
Chan HP, Samala RK, Hadjiiski LM, et al. Deep learning in medical image analysis [J]. Adv Exp Med Biol, 2020, 1213: 3-21.
|
7 |
Pehrson LM, Lauridsen C, Nielsen MB. Machine learning and deep learning applied in ultrasound [J]. Ultraschall Med, ,2018, 39(4): 379-381.
|
8 |
Brattain LJ, Telfer BA, Dhyani M, et al. Machine learning for medical ultrasound: status, methods, and future opportunities [J]. Abdom Radiol (NY), 2018, 43(4): 786-799.
|
9 |
Lai S, Xu L, Liu K, et al. Recurrent convolutional neural networks for text classification [C]. 29th AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 2015.
|
10 |
Xie H N, Wang N, He M, et al. Using deep‐learning algorithms to classify fetal brain ultrasound images as normal or abnormal [J]. Ultrasound Obstet Gynecol, 2020, 56(4): 579-587.
|
11 |
Xue L, Jiang Z, Fu T, et al. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis [J]. Eur Radiol, 2020, 30(5): 2973-2983.
|
12 |
Zhou R, Fenster A, Xia Y, et al. Deep learning‐based carotid media‐adventitia and lumen‐intima boundary segmentation from three‐dimensional ultrasound images [J]. Med Phys, 2019, 46(7): 3180-3193.
|
13 |
Karimi D, Zeng Q, Mathur P, et al. Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images [J]. Med Image Anal, 2019, 57: 186-196.
|
14 |
Jin Z, Zhu Y, Zhang S, et al. Ultrasound computer-aided diagnosis (CAD) based on the thyroid imaging reporting and data system (TI-RADS) to distinguish benign from malignant thyroid nodules and the diagnostic performance of radiologists with different diagnostic experience [J]. Med Sci Monit, 2020, 26: e918452.
|
15 |
Shia W, Lin L, Chen D. Classification of malignant tumours in breast ultrasound using unsupervised machine learning approaches [J]. Sci Rep, 2021, 11(1): 1-11.
|
16 |
Kuo C, Chang C, Liu K, et al. Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning [J]. NPJ Digit Med, 2019, 2: 29.
|
17 |
Liu F, Liu D, Wang K, et al. Deep learning radiomics based on contrast-enhanced ultrasound might optimize curative treatments for very-early or early-stage hepatocellular carcinoma patients [J]. Liver Cancer, 2020, 9(4): 397-413.
|
18 |
Liu D, Liu F, Xie X, et al. Accurate prediction of responses to transarterial chemoembolization for patients with hepatocellular carcinoma by using artificial intelligence in contrast-enhanced ultrasound [J]. Eur Radiol, 2020, 30(4): 2365-2376.
|
19 |
Gondek S, Schroeder ME, Sarani B. Assessment and resuscitation in trauma management [J]. Surg Clin North Am, 2017, 97(5): 985-998.
|
20 |
Schembari E, Sofia M, Latteri S, et al. Blunt liver trauma: effectiveness and evolution of non-operative management (NOM) in 145 consecutive cases [J]. Updates Surg, 2020, 72(4): 1065-1071.
|
21 |
Parra-Romero G, Contreras-Cantero G, Orozco-Guibaldo D, et al. Trauma abdominal: experiencia de 4961 casos en el occidente de México [J]. Cir Cir, 2019, 87(2): 183-189.
|
22 |
战术战伤救治中的超声技术应用专家共识 [J/CD]. 中华医学超声杂志(电子版), 2019, 16(12): 892-898.
|
23 |
Recht MP, Dewey M, Dreyer K, et al. Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations [J]. Eur Radiol, 2020, 30(6): 3576-3584.
|