1 |
李胜利, 邓学东. 产前超声检查指南(2012) [J/CD]. 中华医学超声杂志(电子版), 2012, 9(7): 574-580
|
2 |
Salomon LJ, Alfirevic Z, Berghella V, et al. Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan [J]. Ultrasound Obstet Gynecol, 2011, 37(1): 116-126.
|
3 |
Jaudi S, Granger B, Herpin CN, et al. Online audit and feedback improve fetal second-trimester four-chamber view images: a randomised controlled trial [J]. Prenat Diagn, 2013, 33(10): 959-964.
|
4 |
Ursem N, Peters I, Kraan-van der Est M, et al. An audit of second-trimester fetal anomaly scans based on a novel image-scoring method in the southwest region of the netherlands [J]. J Ultrasound Medicine, 2017, 36(6): 1171-1179.
|
5 |
Wu L, Cheng J, Li S, et al. FUIQA: Fetal ultrasound image quality assessment with deep convolutional networks [J]. IEEE Trans Cybern, 2017, 47(5): 1336-1349.
|
6 |
Lin Z, Li S, Dong N, et al. Multi-task learning for quality assessment of fetal head ultrasound images [J]. Med Image Anal, 2019, 58: 101548.
|
7 |
Dong J, Liu S, Liao Y, et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes [J]. IEEE J Biomed Health Inform, 2020, 24(4): 931-942.
|
8 |
Ciritsis A, Rossi C, Eberhard M, et al. Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making [J]. Eur Radiol, 2019, 29(10): 5458-5468.
|
9 |
Anas E, Mousavi P, Abolmaesumi P. A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy [J]. Med Image Anal, 2018, 48: 107-116.
|
10 |
Yu Z, Tan E, Ni D, et al. A deep convolutional neural network-based frame work for automatic fetal facial standard plane recognition [J]. IEEE J Biomed Health Inform, 2018, 22(3): 874-885.
|
11 |
Kim B, Kim K, Park Y, et al. Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images [J]. Physiol Meas, 2018, 39(10): 105007.
|
12 |
Abdi A, Luong C, Tsang, T, et al. Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view [J]. IEEE Trans Med Imaging, 2017, 36(6): 1221-1230.
|
13 |
Chaoui R, Benoit B, Mitkowska-Wozniak H, et al. Assessment of intracranial translucency (IT) in the detection of spina bifida at the 11-13-week scan [J]. Ultrasound Obstet Gynecol, 2009, 34(3): 249-252.
|
14 |
罗丹丹, 黄怡, 李胜利, 等. 胎儿脊髓圆锥位置新测距法及其在脊髓拴系中的应用 [J]. 中华超声影像学杂志, 2018, 27(3): 252-258.
|
15 |
Rodriguez M, Prats P, Munoz A, et al. Sonographic evaluation of the fetal conus medullaris [J]. Prenat Diagn, 2014, 34(11): 1111-1114.
|
16 |
Napolitano R, Donadono V, Ohuma E, et al. Scientific basis for standardization of fetal head measurements by ultrasound: a reproducibility study [J]. Ultrasound Obstet Gynecol, 2016, 48(1): 80-85.
|