1 |
Zhu Y, Mo M, Wei Y, et al. Epidemiology and genomics of prostate cancer in Asian men [J]. Nat Rev Urol, 2021, 18(5): 282-301.
|
2 |
Buchser D, Medina R, Mayrata E, et al. Salvage local treatment for localized radio-recurrent prostate cancer: a narrative review and future perspectives [J]. Future Oncol, 2021, 17(31): 4207-4219.
|
3 |
梁梓南, 杨薇. 影像及影像组学评价肝细胞癌微血管侵犯的应用现状[J/OL].中华医学超声杂志(电子版), 2022, 19(9): 1003-1007.
|
4 |
Lin F, Wang Z, Zhang K, et al. Contrast-Enhanced Spectral Mammography-Based Radiomics Nomogram for Identifying Benign and Malignant Breast Lesions of Sub-1 cm [J]. Front Oncol, 2020, 10: 573630.
|
5 |
Fan L, Cao Q, Ding X, et al. Radiotranscriptomics signature-based predictive nomograms for radiotherapy response in patients with nonsmall cell lung cancer: combination and association of CT features and serum miRNAs levels [J]. Cancer Med, 2020, 9(14): 5065-5074.
|
6 |
Dinis C, Schaap A, Kant J, et al. Radiogenomics analysis linking multiparametric MRI and transcriptomics in prostate cancer [J]. Cancers (Basel), 2023, 15(12): 3074.
|
7 |
Sun, Y, Williams S, Byrne D, et al. Association analysis between quantitative MRI features and hypoxia-related genetic profiles in prostate cancer: a pilot study [J]. Br J Radiol, 2019, 92(1104): 20190373.
|
8 |
Dwivedi DK, Jagannathan NR. Emerging MR methods for improved diagnosis of prostate cancer by multiparametric MRI [J]. Magma, 2022, 35(4): 587-608.
|
9 |
Ou W, Lei J, Li M, et al. Ultrasound-based radiomics score for pre-biopsy prediction of prostate cancer to reduce unnecessary biopsies [J]. Prostate, 2023, 83(1): 109-118.
|
10 |
Fornacon-Wood I, Mistry H, Ackermann CJ, et al. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform [J]. Eur Radiol, 2020, 30(11): 6241-6250.
|
11 |
Fischer S, Tahoun M, Klaan B, et al. Radiogenomic approach for decoding molecular mechanisms underlying tumor progression in prostate cancer [J]. Cancers (Basel), 2019, 11(9): 1293.
|
12 |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 2012, 48(4): 441-446.
|
13 |
Fei B, Schuster DM, Master V, et al. A molecular image-directed, 3D ultrasound-guided biopsy system for the prostate [J]. Proc Spie Int Soc Opt Eng, 2012, 2012: 831613.
|
14 |
Zhang Y, Sankar R, Qian W. Boundary delineation in transrectal ultrasound image for prostate cancer [J]. Comput Biol Med, 2007, 37(11): 1591-1599.
|
15 |
Zhang Q, Xiong J, Cai Y, et al. Multimodal feature learning and fusion on B-mode ultrasonography and sonoelastography using point-wise gated deep networks for prostate cancer diagnosis [J]. Biomed Tech (Berl), 2020, 65(1): 87-98.
|
16 |
Li M, Chen T, Zhao W, et al. Radiomics prediction model for the improved diagnosis of clinically significant prostate cancer on biparametric MRI [J]. Quant Imaging Med Surg, 2020, 10(2): 368-379.
|
17 |
Sun Y, Reynolds HM, Wraith D, et al. Automatic stratification of prostate tumour aggressiveness using multiparametric MRI: a horizontal comparison of texture features [J]. Acta Oncol, 2019, 58(8): 1118-1126.
|
18 |
O'Reilly D, Downing T, Kouba S, et al. CaV1.3 enhanced store operated calcium promotes resistance to androgen deprivation in prostate cancer [J]. Cell Calcium, 2022, 103: 102554.
|
19 |
Ariotti N, Wu Y, Okano S, et al. An inverted CAV1 (caveolin 1) topology defines novel autophagy-dependent exosome secretion from prostate cancer cells [J]. Autophagy, 2021, 17(9): 2200-2216.
|
20 |
Patel R, Ford CA, Rodgers L, et al. Cyclocreatine suppresses creatine metabolism and impairs prostate cancer progression [J]. Cancer Res, 2022, 82(14): 2565-2575.
|
21 |
Gu Y, Lei D, Qin X, et al. Integrated analysis reveals together miR-182, miR-200c and miR-221 can help in the diagnosis of prostate cancer [J]. PLoS One, 2015, 10(10): e0140862.
|
22 |
Li JZ, Li J, Wang HQ, et al. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression [J]. Biochem Biophys Res Commun, 2017, 482(4): 1381-1386.
|
23 |
Ghorbanmehr N, Gharbi S, Korsching E, et al. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer [J]. Prostate, 2019, 79(1): 88-95.
|
24 |
Tang G, Du R, Tang Z, et al. MiRNALet-7a mediates prostate cancer PC-3 cell invasion, migration by inducing epithelial-mesenchymal transition through CCR7/MAPK pathway [J]. J Cell Biochem, 2018, 119(4): 3725-3731.
|
25 |
Liu H, Chen W, Zhi X, et al. Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility [J]. Oncogene, 2018, 37(36): 4964-4978.
|
26 |
Tsao CW, Liu CY, Cha TL, et al. Artificial neural network for predicting pathological stage of clinically localized prostate cancer in a Taiwanese population [J]. J Chin Med Assoc, 2014, 77(10): 513-518.
|