切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (08) : 721 -732. doi: 10.3877/cma.j.issn.1672-6448.2025.08.006

妇产科超声影像学

基于产前时序超声数据的新生儿出生体重智能预测
杨丽仙1, 黄稚熙2, 梁博诚3, 欧阳淑媛4, 陈明朗5, 赵英丽5, 马薇波6, 缪敬1, 王磊7, 袁鹰3,()   
  1. 1 650051 昆明,云南省妇幼保健院影像功能科
    2 518028 南方医科大学妇女儿童医学中心深圳市妇幼保健院新生儿科
    3 518028 南方医科大学妇女儿童医学中心深圳市妇幼保健院超声科
    4 518028 南方医科大学妇女儿童医学中心深圳市妇幼保健院医学遗传中心
    5 543002 梧州学院大数据与软件工程学院广西机器视觉与智能控制重点实验室
    6 201318 上海健康医学院护理与健康管理学院
    7 518053 香港大学深圳医院超声医学科
  • 收稿日期:2025-06-07 出版日期:2025-08-01
  • 通信作者: 袁鹰
  • 基金资助:
    云南省妇幼保健院妇幼健康研究项目(FYJK2022-06)

Intelligent prediction of neonatal birth weight based on prenatal sequential ultrasound dataYang

xian Li1, Zhixi Huang2, Bocheng Liang3, Shuyuan Ouyang4, Minglang Chen5, Yingli Zhao5, Weibo Ma6, Jing Miao1, Lei Wang7, Ying Yuan3,()   

  1. 1 Department of Imaging and Functional Medicine, Yunnan Maternal And Child Health Hospital, Kunming 650051, China
    2 Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital (Women and Children's Medical Center), Southern Medical University, Shenzhen 518028, China
    3 Department of Ultrasound, Shenzhen Maternity and Child Healthcare Hospital (Women and Children's Medical Center), Southern Medical University, Shenzhen 518028, China
    4 Medical Genetics Center, Shenzhen Maternity and Child Healthcare Hospital (Women and Children's Medical Center), Southern Medical University, Shenzhen 518028, China
    5 School of Big Data and Software Engineering, Guangxi Key Laboratory of Machine Vision and Intelligent Control Wuzhou University, Wuzhou 543002, China
    6 School of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
    7 Department of Ultrasound Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
  • Received:2025-06-07 Published:2025-08-01
  • Corresponding author: Ying Yuan
引用本文:

杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.

xian Li, Zhixi Huang, Bocheng Liang, Shuyuan Ouyang, Minglang Chen, Yingli Zhao, Weibo Ma, Jing Miao, Lei Wang, Ying Yuan. Intelligent prediction of neonatal birth weight based on prenatal sequential ultrasound dataYang[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(08): 721-732.

目的

基于XGBoost算法建立新生儿出生体重预测模型,为临床围产期决策提供精准的智能工具。

方法

回顾性纳入2021年1月至2023年4月于云南省妇幼保健院接受常规产前检查并住院分娩的1018例单胎妊娠孕妇数据,包括孕妇基本信息,孕早期、孕中期、孕晚期及分娩前7 d内产前超声检查数据(共53项参数),新生儿数据(分娩时胎儿年龄周数和出生体重)。构建XGBoost预测模型,采用多维度评估指标(平均百分比误差、百分比误差标准差、平均绝对百分比误差、均方根误差、平均绝对误差及临床预测准确率),对比分析XGBoost模型与15种传统预测公式及LightGBM、Logistic、CatBoost 3种机器学习模型的预测性能;并进行模型特征重要性分析。

结果

XGBoost模型预测新生儿出生体重表现良好,百分比误差标准差8.21%、平均绝对百分比误差6.34%、均方根误差245.14 g、平均绝对误差194.39 g,误差指标均低于其他预测方法;临床准确率为71.54%,高于其他预测方法。与其他对比模型相比,XGBoost模型高估率为13.73%、低估率为14.71%,表现相对均衡,高估、低估概率均低于Logistic(23.53%/28.43%)、LightGBM(25.98%/24.02%)及CatBoost(17.16%/17.65%)。模型特征重要性分析筛选出21项关键特征,其中分娩前胎儿腹围、分娩孕龄及分娩前羊水最大深度为最重要的预测变量(特征重要性分数分别为35、22、8)。

结论

XGBoost模型成功构建了具有时序关联性的新生儿体重预测模型,其具备良好的稳定性与精准性,性能优于传统的以回归方程预测胎儿体重的方法。

Objective

To establish a neonatal birth weight prediction model based on the XGBoost algorithm to provide a precise intelligent tool for clinical perinatal decision-making.

Methods

A retrospective analysis was conducted on data from 1018 singleton pregnancies who underwent routine prenatal examinations and delivered at the Yunnan Maternal and Child Health Hospital between January 2021 and April 2023. The dataset included maternal basic information, prenatal ultrasound examination parameters (53 variables in total) during the first, second, and third trimesters, as well as within 7 days before delivery, and neonatal data (gestational age at delivery and birth weight). An XGBoost prediction model was constructed, and its performance was evaluated using multidimensional metrics (mean percentage error, standard deviation of percentage error, mean absolute percentage error, root mean square error, mean absolute error, and clinical prediction accuracy). The XGBoost model was compared with 15 traditional prediction formulas and machine learning models (LightGBM, Logistic, and CatBoost). Feature importance analysis was also performed.

Results

The XGBoost model demonstrated strong performance in predicting neonatal birth weight, with a percentage error standard deviation of 8.21%, mean absolute percentage error of 6.34%, root mean square error of 245.14 g, and mean absolute error of 194.39 g, all error metrics were lower than those of other prediction methods. The clinical accuracy rate reached 71.54%, surpassing those of other predictive approaches. Compared to other benchmark models, the XGBoost model exhibited relatively balanced performance with an overestimation rate of 13.73% and an underestimation rate of 14.71%, both lower than those of Logistic (23.53%/28.43%), LightGBM (25.98%/24.02%), and CatBoost (17.16%/17.65%). Feature importance analysis identified 21 key predictors, among which fetal abdominal circumference before delivery, gestational age at delivery, and maximum amniotic fluid depth before delivery emerged as the most significant predictive variables (feature importance scores of 35, 22, and 8, respectively).

Conclusion

An XGBoost-based temporally correlated neonatal weight prediction model with robust stability and precision has been successfully constructed, and it outperforms traditional regression-based fetal weight prediction methods.

图1 超声参数测量切面。图a为丘脑水平横切面(测量双顶径和头围);图b为小脑水平横切面;图c为腹围水平横切面;图d为股骨长轴切面;图e为头臀长标准切面;图f为颈项透明层标准切面;图g为羊水最大深度测量切面;图h为脐动脉游离段血流频谱;图i为大脑中动脉血流频谱
表1 纳入的不同孕期产前超声检查参数
表2 15种预测胎儿体重的超声参数回归方程
表3 各机器学习模型的超参数配置
图2 研究技术路线图 注:RMSE为均方根误差;MAE为平均绝对误差;MAPE为平均绝对百分比误差
表4 1018例孕妇基本信息
表5 孕早期(11~13+6周)超声产前筛查参数(n=1018)
表6 孕中期(20~24+6周)超声产前筛查参数(n=1018)
表7 孕晚期(28~34周)常规产前超声参数(n=1018)
表8 分娩前7 d内的常规产前超声参数(n=1018)
表9 新生儿相关信息(n=1018)
图3 新生儿体重预测模型及传统估算公式的高估与低估概率分析图 注:weight1至weight15为15种传统胎儿体重预测公式分别为:Hadlock I、Hadlock Ⅳ、Hadlock Ⅱ、Hadlock Ⅲ、Ott、Combs、Bernstein、Hadlock V、Jordaan、ShepardⅡ、Johnson、Merz、Warsof、Campbell、Stirnemann;XGBoost、CatBoost、LightGBM、Logistic为4种预测模型
图4 新生儿体重预测模型及传统估算公式的平均误差百分比 注:weight1至weight15为15种传统胎儿体重预测公式分别为:Hadlock I、Hadlock Ⅳ、Hadlock Ⅱ、Hadlock Ⅲ、Ott、Combs、Bernstein、Hadlock V、Jordaan、ShepardⅡ、Johnson、Merz、Warsof、Campbell、Stirnemann;XGBoost、CatBoost、LightGBM、Logistic为4种预测模型
图5 新生儿体重预测模型及传统估算公式的百分比误差标准差 注:weight1至weight15为15种传统胎儿体重预测公式分别为:Hadlock I、Hadlock Ⅳ、Hadlock Ⅱ、Hadlock Ⅲ、Ott、Combs、Bernstein、Hadlock V、Jordaan、ShepardⅡ、Johnson、Merz、Warsof、Campbell、Stirnemann;XGBoost、CatBoost、LightGBM、Logistic为4种预测模型
图6 新生儿体重预测模型及传统估算公式的平均绝对百分比误差 注:weight1至weight15为15种传统胎儿体重预测公式分别为:Hadlock I、Hadlock Ⅳ、Hadlock Ⅱ、Hadlock Ⅲ、Ott、Combs、Bernstein、Hadlock V、Jordaan、ShepardⅡ、Johnson、Merz、Warsof、Campbell、Stirnemann;XGBoost、CatBoost、LightGBM、Logistic为4种预测模型
图7 新生儿体重预测模型及传统估算公式的绝对百分比误差标准差 注:weight1至weight15为15种传统胎儿体重预测公式分别为:Hadlock I、Hadlock Ⅳ、Hadlock Ⅱ、Hadlock Ⅲ、Ott、Combs、Bernstein、Hadlock V、Jordaan、ShepardⅡ、Johnson、Merz、Warsof、Campbell、Stirnemann;XGBoost、CatBoost、LightGBM、Logistic为4种预测模型
图8 新生儿体重预测模型及传统估算公式的绝对误差标准差 注:weight1至weight15为15种传统胎儿体重预测公式分别为:Hadlock I、Hadlock Ⅳ、Hadlock Ⅱ、Hadlock Ⅲ、Ott、Combs、Bernstein、Hadlock V、Jordaan、ShepardⅡ、Johnson、Merz、Warsof、Campbell、Stirnemann;XGBoost、CatBoost、LightGBM、Logistic为4种预测模型
图9 新生儿体重预测模型及传统估算公式的均方根误差 注:weight1至weight15为15种传统胎儿体重预测公式分别为:Hadlock I、Hadlock Ⅳ、Hadlock Ⅱ、Hadlock Ⅲ、Ott、Combs、Bernstein、Hadlock V、Jordaan、ShepardⅡ、Johnson、Merz、Warsof、Campbell、Stirnemann;XGBoost、CatBoost、LightGBM、Logistic为4种预测模型
图10 新生儿体重预测模型及传统估算公式的平均绝对误差 注:weight1至weight15为15种传统胎儿体重预测公式分别为:Hadlock I、Hadlock Ⅳ、Hadlock Ⅱ、Hadlock Ⅲ、Ott、Combs、Bernstein、Hadlock V、Jordaan、ShepardⅡ、Johnson、Merz、Warsof、Campbell、Stirnemann;XGBoost、CatBoost、LightGBM、Logistic为4种预测模型
图11 新生儿体重预测模型及传统估算公式的预测准确率 注:weight1至weight15为15种传统胎儿体重预测公式分别为:Hadlock I、Hadlock Ⅳ、Hadlock Ⅱ、Hadlock Ⅲ、Ott、Combs、Bernstein、Hadlock V、Jordaan、ShepardⅡ、Johnson、Merz、Warsof、Campbell、Stirnemann;XGBoost、CatBoost、LightGBM、Logistic为4种预测模型
图12 特征重要性分析筛选出的21项对新生儿出生体重有价值的预测指标 注:AC为腹围;GA为孕龄;MVP为羊水最大深度;FL为股骨长;HC为头围;BPD为双顶径;MCA为大脑中动脉;S/D为收缩期峰值流速与舒张末期流速比值;UA为脐动脉;RI为阻力指数;PI为搏动指数;Vmin为最低流速;HL为肱骨长
1
Lubrano C, Taricco E, Coco C, et al. Perinatal and neonatal outcomes in fetal growth restriction and small for gestational age[J]. J Clin Med, 2022, 11(10): 2729.
2
Lu Y, Fu X, Chen F, et al. Prediction of fetal weight at varying gestational age in the absence of ultrasound examination using ensemble learning[J]. Artif Intell Med, 2020, 102: 101748.
3
Ma J, Cheng D, Zhang Z, et al. Evaluating the accuracy of sonographic fetal weight estimations using the Hadlock IV formula in a Chinese population[J]. Quant Imaging Med Surg, 2023, 13(6): 3726-3734.
4
Pu B, Li K, Li S, et al. Automatic fetal ultrasound standard plane recognition based on deep learning and ⅡoT[J]. IEEE Transactions on Industrial Informatics, 2021, 17(11): 7771-7780.
5
Pu B, Li K, Chen J, et al. HFSCCD: A hybrid neural network for fetal standard cardiac cycle detection in ultrasound videos[J]. IEEE J Biomed Health Inform, 2024, 28(5): 2943-2954.
6
He J, Yang L, Liang B, et al. Fetal cardiac ultrasound standard section detection model based on multitask learning and mixed attention mechanism[J]. Neurocomputing, 2024, 579: 127443.
7
石智红,李胜利. 人工智能在产前超声中的应用和研究进展[J/OL]. 中华医学超声杂志 (电子版), 2023, 20(1): 113-117.
8
谢子勋, 陈億龙, 宋维, 等. 融合科学智算的高危产妇妊娠结果评估模型及其应用研究[J]. 人工智能, 2024, (5): 109-125.
9
李昆, 柴玉梅, 赵红领, 等. 基于深度神经网络的胎儿体重预测[J]. 计算机科学, 2016, 43(z2): 73-76,82.
10
Caramês ETS, de Moraes-Neto VF, Bertozzi BG, et al. Identification of Fusarium sambucinum species complex by surface-enhanced Raman spectroscopy and XGBoost algorithm[J]. Food Chem, 2025, 480: 143848.
11
中华医学会超声医学分会妇产超声学组, 国家卫生健康委妇幼司全国产前诊断专家组医学影像组. 超声产前筛查指南 [J]. 中华超声影像学杂志, 2022, 31(1): 1-12.
12
任芸芸, 谢洪宁, 杨敏, 等. 中国产科超声检查指南[M].北京: 人民卫生出版社, 2019.
13
中华预防医学会出生缺陷预防与控制专业委员会产前超声诊断学组, 中华医学会超声医学分会妇产学组. 胎儿生物学参数超声参考值专家共识: 估测胎儿体重[J/OL]. 中华医学超声杂志(电子版), 2024, 21(8): 762-765.
14
Hammami A, Mazer Zumaeta A, Syngelaki A, et al. Ultrasonographic estimation of fetal weight: development of new model and assessment of performance of previous models[J]. Ultrasound Obstet Gynecol, 2018, 52(1): 35-43.
15
Lanowski JS, Lanowski G, Schippert C, et al. Ultrasound versus clinical examination to estimate fetal weight at term[J]. Geburtshilfe Frauenheilkd, 2017, 77(3): 276-283.
16
Eze CU, Egwuanumku KI, Agwuna KK, et al. Validity of common ultrasound methods of fetal weight estimation in late pregnancy among women in Kwale, Niger Delta region, Nigeria[J]. Afr Health Sci, 2015, 15(1): 206-216.
17
Campbell WA, Vintzileos AM, Neckles S, et al. Use of the femur length to estimate fetal weight in premature infants: preliminary results[J]. J Ultrasound Med, 1985, 4(11): 583-590.
18
Stirnemann J, Villar J, Salomon LJ, et al. International estimated fetal weight standards of the INTERGROWTH-21(st) Project[J]. Ultrasound Obstet Gynecol, 2017, 49(4): 478-486.
19
De Myttenaere A, Golden B, Le Grand B, et al. Using the mean absolute percentage error for regression models[DB/OL]. (2015-06-12)[2025-06-07].
20
林丽辉, 李国香, 刘良刚, 等. 应用超声胎儿测量系统预测胎儿体重的符合率研究[J]. 影像研究与医学应用, 2021, 5(15): 34-35.
21
王海红, 韩冰, 张慧. 影响超声估计胎儿体重准确性因素的研究进展[J]. 中华围产医学杂志, 2018, 21(10): 706-711.
22
Nash CM, Woolcott C, O'connell C, et al. Optimal timing of prenatal ultrasound in predicting birth weight in diabetic pregnancies[J]. J Obstet Gynaecol Can, 2020, 42(1): 48-53.
23
Dias T, Thilaganathan B. Is first-trimester crown-rump length associated with birthweight?[J]. BJOG, 2012, 119(3): 380.
24
Wang B, Zhang C. Risk evaluation of fetal growth restriction by combined screening in early and mid-pregnancy[J]. Pak J Med Sci, 2020, 36(7): 1708-1713.
25
蒋雯音.机器学习方法在早产和低出生体重儿预测中的应用[J]. 医学信息学杂志, 2019, 40(4): 59-63.
26
Plotka SS, Grzeszczyk MK, Szenejko PI, et al. Deep learning for estimation of fetal weight throughout the pregnancy from fetal abdominal ultrasound[J]. Am J Obstet Gynecol MFM, 2023, 5(12): 101182.
27
郭长胜. 胎儿宫内发育迟缓的危险因素及孕期运动对其干预作用的研究进展[J]. 儿童保健杂志, 2022, 30(10): 1091.
28
Ishrat S, Rahman MW, Rahman MR, et al. Leptin concentrations in maternal and umbilical cord blood in relation to maternal weight, birth weight and weight of the placenta[J]. Bangladesh Journal of Obstetrics & Gynaecology, 2008, 23(1): 3-7.
[1] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[2] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[3] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[4] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[5] 王彦, 张晓航, 冉素真, 钟春燕, 张晋炜, 王希. 双胎贫血-红细胞增多序列征的产前超声特征分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 462-469.
[6] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[7] 郑仁杰, 张尊庶, 黄陈. 病理组学在胃癌诊治中的应用与挑战[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 274-280.
[8] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[9] 詹彧鸣, 张翔, 翁山耕. 人工智能在腹膜后肿瘤精准诊疗中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 371-376.
[10] 希龙夫, 薛荣泉. 人工智能在肝胆胰肿瘤诊治中应用与进展[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(03): 166-171.
[11] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[12] 李媛媛, 李荣山. 机器学习:肾脏疾病研究与诊疗的新前沿[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 181-187.
[13] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[14] 陈欢, 李梦涵, 于伟泓. 重视人工智能在构建眼底疾病三级诊疗筛查体系中的应用[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 129-134.
[15] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?