切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (08) : 754 -760. doi: 10.3877/cma.j.issn.1672-6448.2025.08.010

小儿超声影像学

OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值
刘晴晴1, 俞劲1,3, 徐玮泽2,3, 张志伟3, 潘晓华3, 舒强2,3, 叶菁菁1,3,()   
  1. 1 310052 杭州,浙江大学医学院附属儿童医院超声科(国家儿童健康与疾病临床医学研究中心)
    2 310052 杭州,浙江大学医学院附属儿童医院心脏外科(国家儿童健康与疾病临床医学研究中心)
    3 310053 杭州,浙江大学滨江研究院
  • 收稿日期:2025-03-19 出版日期:2025-08-01
  • 通信作者: 叶菁菁
  • 基金资助:
    浙江省公益技术应用研究项目(LGF22H180002); 国家自然科学基金面上项目(82270309); 浙江省“领雁”研发攻关计划(2022C03087)

Value of OBICnet image classification model in ultrasound screening for congenital heart disease in children

Qingqing Liu1, Jin Yu1,3, Weize Xu2,3, Zhiwei Zhang3, Xiaohua Pan3, Qiang Shu2,3, Jingjing Ye1,3,()   

  1. 1 Department of Ultrasound,Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health and Disease, Hangzhou 310052, China
    2 Department of Cardiac Surgery, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health and Disease, Hangzhou 310052, China
    3 Binjiang Research Institute, Zhejiang University, Hangzhou 310053, China
  • Received:2025-03-19 Published:2025-08-01
  • Corresponding author: Jingjing Ye
引用本文:

刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.

Qingqing Liu, Jin Yu, Weize Xu, Zhiwei Zhang, Xiaohua Pan, Qiang Shu, Jingjing Ye. Value of OBICnet image classification model in ultrasound screening for congenital heart disease in children[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(08): 754-760.

目的

探讨人工智能技术在小儿先天性心脏病超声筛查中的应用价值。

方法

选取2021年9月至2022年2月于浙江大学医学院附属儿童医院进行超声心动图检查的心脏结构正常及异常的彩色多普勒超声静态图像8543张,按8∶1∶1的比例将其划分为训练集6871张、验证集833张、测试集839张。构建OBICnet模型,采用F1分数、准确率、精确率、召回率、特异度、误诊率及漏诊率评价人工智能模型的识别性能,并与ResNet50、GBCnet两种人工智能模型进行比较。另收集2022年11月至2023年1月在浙江大学医学院附属儿童医院就诊的50例心脏结构异常患儿(共350张图像)的静态心脏彩色多普勒图像作为外部验证数据。依据超声工作年限将21名基层进修超声医师分为初级、中级、高级3组,比较OBICnet模型与3组医师在外部验证集中的识别效能。

结果

与ResNet50、GBCnet模型相比,OBICnet模型的识别性能最佳,F1分数、准确率、精确率最高,分别为97.0%、98.3%、96.7%;误诊率、漏诊率最低,分别为1.6%、3.0%。在外部验证集,OBICnet模型对正常与异常图像的识别准确率、精确率、特异度分别为94.6%、91.4%、97.6%,高级、中级、初级3组医师的识别准确率分别为89.4%、83.3%、67.8%,精确率分别为78.9%、73.5%、39.3%,特异度分别为91.5%、91.6%、81.4%,OBICnet模型与3组医师比较,差异均具有统计学意义(校正P值均<0.017);OBICnet模型对正常与异常图像的识别敏感度高于中级、初级医师组(88.5% vs 61.5%、31.8%,校正P值<0.017);OBICnet模型漏诊率、误诊率分别为11.5%、2.4%,低于3组医师,差异具有统计学意义(校正P值均<0.017)。

结论

OBICnet模型对正常与异常心脏超声图像的识别性能较好,在儿童先天性心脏病超声筛查工作中具有一定的应用价值。

Objective

To explore the value of artificial intelligence in ultrasound screening of congenital heart disease in children.

Methods

A total of 8543 static color Doppler ultrasound images of normal and abnormal cardiac structures from the Children's Hospital Affiliated to Zhejiang University School of Medicine from September 2021 to February 2022 were selected and divided into a training set of 6871 images, a validation set of 833 images, and a test set of 839 images at a ratio of 8:1:1. The OBICnet model was constructed, and its recognition performance was evaluated using F1 score, accuracy, precision, recall, specificity, misdiagnosis rate, and missed diagnosis rate. The performance of the OBICnet model was compared with that of the ResNet50 and GBCnet models. Additionally, 350 static color Doppler images of 50 children with abnormal cardiac structures who visited the Children's Hospital Affiliated to Zhejiang University School of Medicine from November 2022 to January 2023 were collected as external validation data. Twenty-one grassroots ultrasound physicians were divided into three groups based on their years of ultrasound experience: junior, intermediate, and senior. The recognition performance was compared between the OBICnet model and the three groups of physicians on the external validation set.

Results

Compared with ResNet50 and GBCnet models, the OBICnet model had the best recognition performance, with the highest F1 score, accuracy, and precision, which were 97.0%, 98.3%, and 96.7%, respectively, and the lowest misdiagnosis rate and missed diagnosis rate, which were 1.6% and 3.0%, respectively. In the external validation set, the OBICnet model's recognition accuracy, precision, and specificity for normal and abnormal images were 94.6%, 91.4%, and 97.6%, respectively. The recognition accuracy of senior, intermediate, and junior physicians was 89.4%, 83.3%, and 67.8%, respectively, the precision was 78.9%, 73.5%, and 39.3%, respectively, and the specificity was 91.5%, 91.6%, and 81.4%, respectively. The differences in recognition performance between the OBICnet model and the physician groups were statistically significant (all adjusted P<0.017). The recognition sensitivity of the OBICnet model for normal and abnormal images was higher than that of the intermediate and junior physician groups (88.5% vs 61.5% and 31.8%, adjusted P<0.017). The missed diagnosis rate and misdiagnosis rate of the OBICnet model were 11.5% and 2.4%, respectively, which were significantly lower than those of the three groups of physicians (all adjusted P<0.017).

Conclusion

The OBICnet model exhibits superior recognition performance for normal and abnormal cardiac ultrasound images, and it has appreciated application value in the ultrasound screening of congenital heart disease in children.

图1 小儿先天性心脏病七步筛查法7个超声标准切面。图a为胸骨旁左心室长轴切面;图b为胸骨旁大动脉短轴切面;图c为胸骨旁四腔心切面;图d为胸骨旁五腔心切面;图e为剑突下四腔
图2 OBICnet模型框架
表1 8543张心脏彩色多普勒静态图片疾病分布情况(张)
表2 OBICnet、ResNet50及GBCnet模型对正常与异常超声图像的识别性能(%)
表3 OBICnet模型及3组超声医师对外部验证集正常与异常超声图像的识别性能(%)
1
Zhao QM, Liu F, Wu L, et al. Prevalence of congenital heart disease at live birth in China [J]. J Pediatr, 2019, 204: 53-58.
2
MacDonald B, Yim D, Ramsay J, et al. Detection of congenital heart disease by neonatologist performed cardiac ultrasound in preterm infants [J]. J Perinatol, 2024, 44(10): 1432-1436.
3
叶菁菁, 徐玮泽, 俞劲, 等. 小儿先天性心脏病超声七步筛查法 [M]. 北京: 中华医学电子音像出版社, 2023.
4
Basu S, Gupta M, Rana P, et al. Surpassing the human accuracy: Detecting gallbladder cancer from USG images with curriculum learning [DB/OL]. (2022-04-25)[2025-03-19].
5
Han G, Jin T, Zhang L, et al. Adoption of compound echocardiography under artificial intelligence algorithm in fetal congenial heart disease screening during gestation [J]. Appl Bionics Biomech, 2022: 6410103.
6
Gong Y, Zhang Y, Zhu H, et al. Fetal congenital heart disease echocardiogram screening based on DGACNN: Adversarial one-class classification combined with video transfer learning [J]. IEEE Trans Med Imaging, 2020, 39(4): 1206-1222.
7
GBD 2017 Congenital Heart Disease Collaborators. Global, regional, and national burden of congenital heart disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet Child Adolesc Health, 2020, 4(3): 185-200.
8
潘飞霞, 徐玮泽, 李嘉斌, 等. 中国先天性心脏病疾病负担三十年变化分析 [J].浙江大学学报(医学版), 2022, 51(3): 267-277.
9
Ma XJ, Huang GY. Current status of screening, diagnosis, and treatment of neonatal congenital heart disease in China [J]. World J Pediatr, 2018, 14(4): 313-314.
10
Moceri P, Kraemer J. Atrial strain in patients with pulmonary arterial hypertension associated with congenital heart disease [J]. Arch Cardiovas Dis S, 2023, 15(3): 259.
11
Liu X, Xu W, Yu J, et al. Screening for congenital heart defects: diversified strategies in current China [J]. World Journal of Pediatric Surgery, 2019, 2(1): e000051.
12
叶菁菁, 楼丹娜, 俞劲, 等. 进修医生小儿超声心动图基础的问卷调查与对策研究 [J]. 中国高等医学教育, 2023, (4): 121-122.
13
Reddy CD, Van den Eynde J, Kutty S. Artificial intelligence in perinatal diagnosis and management of congenital heart disease [J]. Semin Perinatol, 2022, 46(4): 151588.
14
Han G, Jin T, Zhang L, et al. Adoption of compound echocardiography under artificial intelligence algorithm in fetal congenial heart disease screening during gestation [J]. Appl Bionics Biomech, 2022 : 6410103.
15
Luo H, Qin G, Wang L, et al. Outcomes of infant cardiac surgery for congenital heart disease concomitant with persistent pneumonia: a retrospective cohort study [J]. J Cardiothoracic Vasc Anesth, 2019, 33(2): 428-432.
16
Chen G, Huang Y, Xu J, et al. Video mamba suite: State space model as a versatile alternative for video understanding [DB/OL]. (2024-03-14) [2025-03-19].
17
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[DB/OL]. (2017-06-12) [2025-03-19].
18
Feichtenhofer C, Fan H, Malik J, et al. SlowFast networks for video recognition [DB/OL]. (2019-10-29) [2025-03-19].
[1] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[2] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[3] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[4] 罗兵, 董凤群, 牛艺臻, 王锟, 程志华, 刘宏强. 胎儿超声心动图在单纯性肺动脉瓣狭窄及预后评估中的价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 740-747.
[5] 张俊清, 周秘, 张文军, 谭静, 尹立雪. 射血分数保留肝硬化患者的肝脏硬度与左心室功能超声特征及相关性分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 768-776.
[6] 应康, 郭良云, 胡震. 超声心动图对成人型主动脉缩窄漏诊原因分析及质量控制改进措施[J/OL]. 中华医学超声杂志(电子版), 2025, 22(07): 633-636.
[7] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[8] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[9] 张家乐, 田璐, 伍国胜, 刘莹莹, 李志, 吴琼, 纪世召. 浅析人工智能在海战烧伤诊疗中的应用前景[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 426-430.
[10] 石爽, 王艺, 史娜, 徐微. 多源信息融合下人工智能在慢性伤口管理中的精准应用与展望[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 431-435.
[11] 左泽平, 宇洪涛, 朱金海, 钱俊杰, 徐秀民, 王一行, 梁朝朝, 郝宗耀. 智能无线腔镜在超微通道经皮肾镜取石术中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 736-741.
[12] 董艳, 郭继武, 毛杰. 儿童重症急性胰腺炎一例诊治分析并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 956-961.
[13] 谢钰嵘, 唐流康, 陈明政, 王伟利, 缪文学, 谢峰. 人工智能在肝胆外科临床教学中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 822-827.
[14] 高成立, 何凯明, 冯啸, 曾凯宁, 唐晖, 姚嘉, 杨卿, 易慧敏, 易述红, 杨扬, 傅斌生. 肝移植治疗儿童遗传代谢性肝病安全性及疗效:单中心44例分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 844-851.
[15] 姜彤彤, 戎萍, 马融, 付乾芳, 张亚同, 赵书艺, 刘晖, 马榕, 李悦, 李瑞本. 抽动障碍儿童呼吸道感染后的临床特征及抽动症状加重的危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 426-432.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?