切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2016, Vol. 13 ›› Issue (06) : 459 -465. doi: 10.3877/cma.j.issn.1672-6448.2016.06.012

所属专题: 乳腺超声 文献

浅表器官超声影像学

乳腺良恶性病灶超声造影预测模型在乳腺影像报告与数据系统4类乳腺病灶恶性风险评估中的应用价值
罗俊1, 陈吉东1, 陈琴1,(), 岳林先1, 周果1, 兰橙1, 李一2, 吴池华2, 苏学智3, 卢旌乔4   
  1. 1. 610072 成都,四川省人民医院超声科
    2. 610072 成都,四川省人民医院乳腺外科
    3. 610072 成都,四川省人民医院病理科
    4. 30322 佐治亚州亚特兰大,美国埃默理大学医学院耳鼻咽喉科
  • 收稿日期:2015-09-27 出版日期:2016-06-01
  • 通信作者: 陈琴

Application value of predictive models of contrast-enhanced ultrasound in the evaluation of breast imaging reporting and data system 4 breast lesions

Jun Luo1, Jidong Chen1, Qing Chen1,(), Linxian Yue1, Guo Zhou1, Cheng Lan1, Yi Li2, Chihua Wu2, Xuezhi Su3, Jingqiao Lu4   

  1. 1. Department of Ultrasound, Sichuan Provincial People’s Hospital, Chengdu 610072, China
    2. Department of Breast Surgery, Sichuan Provincial People’s Hospital, Chengdu 610072, China
    3. Department of Pathology, Sichuan Provincial People’s Hospital, Chengdu 610072, China
    4. Department of Otolaryngology, School of Medicine, Emory University, Atlanta, GA 30322, USA
  • Received:2015-09-27 Published:2016-06-01
  • Corresponding author: Qing Chen
  • About author:
    Corresponding author: Chen qin, Email:
引用本文:

罗俊, 陈吉东, 陈琴, 岳林先, 周果, 兰橙, 李一, 吴池华, 苏学智, 卢旌乔. 乳腺良恶性病灶超声造影预测模型在乳腺影像报告与数据系统4类乳腺病灶恶性风险评估中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2016, 13(06): 459-465.

Jun Luo, Jidong Chen, Qing Chen, Linxian Yue, Guo Zhou, Cheng Lan, Yi Li, Chihua Wu, Xuezhi Su, Jingqiao Lu. Application value of predictive models of contrast-enhanced ultrasound in the evaluation of breast imaging reporting and data system 4 breast lesions[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2016, 13(06): 459-465.

目的

构建乳腺良恶性病灶超声造影预测模型,评价其在乳腺影像报告与数据系统(BI-RADS)4类乳腺病灶恶性风险评估中的应用价值。

方法

2013年1月至2014年7月在四川省人民医院接受乳腺超声造影检查的230例患者,共235个乳腺实性结节。所有患者经最终穿刺活检或者手术病理结果确诊。通过对既往文献关于乳腺良恶性病灶超声造影模式的分析及本课题组的前期研究和临床经验总结,构建乳腺良恶性病灶超声造影预测模型。以穿刺活检或手术病理结果作为金标准,计算预测乳腺良恶性病灶的超声造影模型鉴别诊断乳腺良恶性病灶的敏感度、特异度、准确性。

结果

本组235个乳腺结节,其中乳腺良性结节139个(59.2%),乳腺恶性结节96个(40.8%)。乳腺良恶性病灶超声造影预测模型鉴别诊断乳腺良恶性病灶的敏感度、特异度及准确性分别为87.01%、86.92%和86.99%。

结论

乳腺良恶性病灶超声造影模式存在差异。乳腺良恶性病灶超声造影预测模型可以更好地评估乳腺病灶恶性风险,尤其对BI-RADS 4类乳腺病灶评估更准确。

Objective

To build breast contrast-enhanced ultrasound (CEUS) predictive models of benign and malignant lesions, and evaluate its value in malignant risk assessment.

Methods

Breast CEUS predictive models of benign and malignant lesions was build depending on the analysis of published papers, conclusion of the previous study results and the clinical experience. With final pathology results as the gold standard, the predictive value was evaluated in totally 235 nodules which were classified as breast imaging reporting and data system (BI-RADS) 4.

Results

There were 139 benign nodules (59.2%) and 96 malignant nodules (40.8%) in this study. Diagnostic sensitivity, specificity and accuracy of three malignant CEUS models and three benign CEUS models were 87.01%, 86.92% and 86.99%, respectively.

Conclusions

The contrast-enhanced patterns of benign and malignant breast tumors are different. The breast CEUS models can predict malignant risk of breast lesions more accurately, may lead to the decrease of false-positive biopsy and better BI-RADS used nowadays.

图1~13 乳腺恶性病灶的超声造影预测模型。图1~3 分别为A模型示意图、二维超声表现、超声造影表现,示病灶高增强,增强后病灶范围增大,有或无增强后病灶形态不规则;图4~6 分别为B模型示意图、二维超声表现、超声造影表现,示病灶高增强,向心性增强,有充盈缺损(箭头所示),有或无增强后病灶范围增大;图7 为C模型示意图。图8、9分别为二维超声表现、超声造影表现示病灶快进高增强,有滋养血管(箭头所示);图10、11 分别为二维超声表现、超声造影表现示病灶快进高增强,有蟹足征(箭头所示);图12、13 分别为二维超声表现、超声造影表现示病灶同进等增强,伴充盈缺损(箭头所示)
图14~24 乳腺良性病灶的超声造影预测模型。图14~16 分别为D模型示意图、二维超声表现、超声造影表现,示病灶高增强,增强后病灶大小不变,形态规则,无滋养血管;图17~19 分别为E模型示意图、二维超声表现、超声造影表现,病灶慢进或同进等增强,不能分辨病灶边界及形态,无充盈缺损和滋养血管征;图20 为E模型病灶时间-强度曲线,呈同进等增强;图21~23 分别为F模型示意图、二维超声表现、超声造影表现,病灶慢进或同进低增强,增强后大小不变或缩小,无滋养血管;图24 为F模型病灶时间-强度曲线,呈慢进低增强
表1 乳腺良恶性病灶超声造影预测模型鉴别诊断乳腺良恶性病灶的价值(个)
[1]
Liu H, Jiang YX, Liu JB, et al. Evaluation of breast lesions with contrast-enhanced ultrasound using the microvascular imaging technique: initial observations [J]. Breast, 2008, 17(5): 532-539.
[2]
Zhao H, Xu R, Ouyang Q, et al. Contrast-enhanced ultrasound is helpful in the differentiation of malignant and benign breast lesions [J]. Eur J Radiol, 2010, 73(2): 288-293.
[3]
Jiang YX, Liu H, Liu JB, et al. Breast tumor size assessment: comparison of conventional ultrasound and contrast-enhanced ultrasound [J]. Ultrasound Med Biol, 2007, 33(12): 1873-1881.
[4]
Xiao X, Ou B, Yang H, et al. Breast contrast-enhanced ultrasound: is a scoring system feasible ? A preliminary study in China [J]. PLoS One, 2014, 9(8): e105517.
[5]
Weind KL, Maier CF, Rutt BK, et al. Invasive carcinomas and fibroadenomas of the breast: comparison of microvessel distributions. Implications for imaging modalities [J]. Radiology, 1998, 208(2): 477-483.
[6]
Sridharan A, Eisenbrey JR, Machado P, et al. Quantitative analysis of vascular heterogeneity in breast lesions using contrast-enhanced 3-D harmonic and subharmonic ultrasound imaging [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2015, 62(3): 502-510.
[7]
Balleyguier C, Opolon P, Mathieu MC, et al. New potential and applications of contrast-enhanced ultrasound of the breast: own investigations and review of the literature [J]. Eur J Radiol, 2009, 69(1): 14-23.
[8]
Caproni N, Marchisio F, Pecchi A, et al. Contrast-enhanced ultrasound in the characterization of breast masses: utility of quantitative analysis in comparison with MRI [J]. Eur Radiol, 2010, 20(6): 1384-1395.
[9]
Szabo BK, Aspelin P, Wiberg MK, et al. Dynamic MR imaging of the breast. Analysis of kinetic and morphologic diagnostic criteria [J]. Acta Radiol, 2003, 44(4): 379-386.
[10]
Haraldsdóttir KH, Jónsson Þ, Halldórsdóttir AB, et al. Tumor Size of Invasive Breast Cancer on Magnetic Resonance Imaging and Conventional Imaging (Mammogram/Ultrasound): Comparison with Pathological Size and Clinical Implications [J]. Scand J Surg, 2016. [Epub ahead of print]
[11]
Veltman J, Stoutjesdijk M, Mann R, et al. Contrast-enhanced magnetic resonance imaging of the breast: the value of pharmaeokinetic paramete derived from fast dynamic imaging during initial enhancement lesions [J]. Eur Radial, 2008, 18(6): 1123-1133.
[12]
Lee HS, Kim SH, Kang BJ, et al. Perfusion Parameters in Dynamic Contrast-enhanced MRI and Apparent Diffusion Coefficient Value in Diffusion-weighted MRI: Association with Prognostic Factors in Breast Cancer [J]. Acad Radiol, 2016, 23(4): 446-456.
[13]
Huang W, Fisher PR, Dulaimy K, et al. Detection of breast malignancy: diagnostic MR protocol for improved specificity [J]. Radiology, 2004, 232(2): 585-591.
[14]
Lord SJ, Lei W, Craft P, et al. A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer [J]. Eur J Cancer, 2007, 43(13): 1905-1917.
[15]
Ko ES, Kim JH, Lim Y, et al. Assessment of Invasive Breast Cancer Heterogeneity Using Whole-Tumor Magnetic Resonance Imaging Texture Analysis: Correlations With Detailed Pathological Findings [J]. Medicine (Baltimore), 2016, 95(3): e2453.
[16]
Peters NH, Borel Rinkes IH, Zuithoff NP, et al. Meta-analysis of MR imaging in the diagnosis of breast lesions [J]. Radiology, 2008, 246(1): 116-124.
[17]
Ellis RL. Differentiation of benign versus malignant breast disease [J]. Radiology, 1999, 210(3): 878-880.
[18]
Liu J, Gao YH, Li DD, et al. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps [J]. Asian Pac J Cancer Prev, 2014, 15(19): 8149-8153.
[19]
Zhao LX, Liu H, Wei Q, et al. Contrast-Enhanced Ultrasonography Features of Breast Malignancies with Different Sizes: Correlation with Prognostic Factors [J]. Biomed Res Int, 2015: 613831.
[20]
Wang L, Du J, Li FH, et al. Diagnostic efficacy of contrast-enhanced sonography by combined qualitative and quantitative analysis in breast lesions: a comparative study with magnetic resonance imaging [J]. J Ultrasound Med, 2013, 32(10): 1805-1814.
[21]
Wang Y, Fan W, Zhao S, et al. Qualitative, quantitative and combination score systems in differential diagnosis of breast lesions by contrast-enhanced ultrasound [J]. Eur J Radiol, 2016, 85(1): 48-54.
[1] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[2] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[3] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[4] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[5] 宋勇, 李东炫, 王翔, 李锐. 基于数据挖掘法分析3 种超声造影剂不良反应信号[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 890-898.
[6] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[7] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[8] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[9] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[10] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[11] 张妍, 原韶玲, 史泽洪, 郭馨阳, 牛菁华. 小肾肿瘤超声漏诊原因分析新思路[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 500-504.
[12] 席芬, 张培培, 孝梦甦, 刘真真, 张一休, 张璟, 朱庆莉, 孟华. 乳腺错构瘤的临床与超声影像学特征分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 505-510.
[13] 陈意志. 核磁共振钆造影剂导致的肾源性系统性纤维化[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 358-358.
[14] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[15] 温绍敏, 王雅晳, 施依璐, 段莎莎, 云书荣, 张小杉. 靶向超声造影技术在动脉粥样硬化治疗中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 496-499.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?