切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (05) : 467 -471. doi: 10.3877/cma.j.issn.1672-6448.2021.05.006

所属专题: 文献

小儿超声影像学

基于深度学习的人工智能测量婴儿非偏心型髋关节的研究
郭爽萍1, 倪东2, 尚宁,1, 王丽敏1, 胡歆迪3, 吕栩再4, 梁永栋1   
  1. 1. 511400 广州,广东省妇幼保健院超声诊断科
    2. 511400 广州,广东省妇幼保健院医务科
    3. 518071 深圳大学医学部生物医学工程学院
    4. 211166 南京医科大学生物医学工程与信息学院
  • 收稿日期:2020-10-19 出版日期:2021-05-01
  • 通信作者: 尚宁

Use of deep learning-based artificial intelligence to measure the centred hip joint of infants

Shuangping Guo1, Dong Ni2, Ning Shang,1, Limin Wang1, Xindi Hu3, Xuzai Lyu4, Yongdong Liang1   

  1. 1. Department of Ultrasound, Guangdong Women and Children's Hospital, Guangzhou 511400, China
    2. Shenzhen University Health Science Center School of Biomedical Engineering, Shenzhen 518071, China
    3. the School of Biomedical Engineering and Information, Nanjing Medical University, Nanjing 211166, China
    4. Medical Department, Guangdong Women and Children's Hospital, Guangzhou 511400, China
  • Received:2020-10-19 Published:2021-05-01
  • Corresponding author: Ning Shang
引用本文:

郭爽萍, 倪东, 尚宁, 王丽敏, 胡歆迪, 吕栩再, 梁永栋. 基于深度学习的人工智能测量婴儿非偏心型髋关节的研究[J/OL]. 中华医学超声杂志(电子版), 2021, 18(05): 467-471.

Shuangping Guo, Dong Ni, Ning Shang, Limin Wang, Xindi Hu, Xuzai Lyu, Yongdong Liang. Use of deep learning-based artificial intelligence to measure the centred hip joint of infants[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(05): 467-471.

目的

评估人工智能模型自动测量婴儿髋关节发育指标的临床应用价值。

方法

选取2019年1月至11月于广东省妇幼保健院超声科进行髋关节超声检查的婴儿231例(共462张标准髋关节图片),使用组内相关系数(ICC)、Deming回归对高年资医师与人工智能测量髋关节数据进行一致性分析,使用ICC对高年资医师、低年资医师、人工智能测量数据进行观察者间一致性分析,对高年资与低年资医师测量数据进行观察者内一致性分析。

结果

高年资医师与人工智能测量α角和β角的ICC分别为0.823、0.745;Deming回归斜率分别为0.856、1.205;回归残差图围绕参考线相对对称。高年资医师与低年资医师测量α角的ICC为0.77,β角的ICC为0.70;低年资医师与人工智能测量α角的ICC为0.79,β角的ICC为0.71;高年资医师与人工智能测量α角的ICC为0.87,β角的ICC为0.79。高年资医师测量2次α角的ICC为0.89,β角的ICC为0.84;低年资医师测量2次α角的ICC为0.88,β角的ICC为0.82。

结论

深度学习的人工智能模型测量髋关节数据与医师测量数据一致性好,且更接近高年资医师测量水平,可辅助超声医师进行临床早期筛查和诊断。

Objective

To evaluate the clinical value of artificial intelligence model for automatic measurement of infant hip joint development.

Methods

A total of 231 infants who underwent hip joint ultrasonic examination (with 462 standard hip joint images) at the Ultrasound Diagnosis Department of Guangdong Women and Children Hospital from January to November 2019 were selected. Intraclass correlation coefficient (ICC) and Deming regression were used for consistency analysis of measurement data of hip joint between a senior sonographer and artificial intelligence. ICC was used for consistency analysis of measurement data between a senior sonographer, a junior sonographer, and artificial intelligence, and for intra-observer agreement of the senior sonographer and junior sonographer.

Results

The ICCs of α angle and β angle measured by the senior sonographer and artificial intelligence were 0.823 and 0.745, respectively; Deming regression slopes were 0.856 and 1.205, respectively, and regression residual plots were relatively symmetric. The ICCs of α angle and β angle measured by the senior sonographer and junior sonographer were 0.77 and 0.70, the ICCs of α angle and β angle measured by the junior sonographer and artificial intelligence were 0.79 and 0.71, and the ICCs of α angle and β angle measured by the senior sonographer and artificial intelligence was 0.87 and 0.79. The ICC of α angle double measured by the senior sonographer was 0.89, and the ICC of β angle was 0.84. The ICC of α angle double measured by the junior sonographer was 0.88, and the ICC of β angle was 0.82.

Conclusion

There is good data consistency between the deep learning-based artificial intelligence model and sonographers in measuring infant hip joints. The accuracy of artificial intelligence is closer to that of senior sonographer, and it can be used to assist in clinical ultrasound screening and diagnosis.

图1 髋关节超声检查图像的示意图。图a为人工标记的髋关节切面图;图b显示4个关键解剖结构;图c显示3个标记点;图d为α角和β角的测量示意图
图2 人工智能模型自动化测量方法流程图
表1 高年资医师与人工智能测量髋关节α角和β角结果比较(°,
xˉ
±s
图3 人工智能模型测量和医师测量髋关节α角和β角的Deming回归分析图。图a为α角的斜率图;图b为α角的回归残差图;图c为β角的斜率图;图d为β角的回归残差图
1
Jackson JC, Runge MM, Nye NS. Common questions about developmental dysplasia of the hip [J]. Am Fam Physician, 2014, 90(12): 843-850.
2
O'Beirne JG, Chlapoutakis K, Alshryda S, et al. International interdisciplinary consensus meeting on the evaluation of developmental dysplasia of the hip [J]. Ultraschall Med, 2019, 40(4): 454-464.
3
王洪杰, 于霞, 高强. 基于深度学习的甲状腺结节自动识别方法在超声图像中的应用 [J]. 中国医疗设备, 2019, 34(10): 72-74, 78.
4
Xie H, Wang N, He M, et al. Using deep learning algorithms to classify fetal brain ultrasound images as normal or abnormal [J]. Ultrasound Obstet Gynecol, 2020, 56(4): 579-587.
5
南嘉格列, 李锐, 王海霞, 等. 基于深度学习的肝包虫病超声图像分型研究 [J]. 深圳大学学报(理工版), 2019, 36(6): 702-708.
6
Buda M, Wildman-Tobriner B, Castor K, et al. Deep learning-based segmentation of nodules in thyroid ultrasound: improving performance by utilizing markers present in the images [J]. Ultrasound Med Biol, 2020, 46(2): 415-421.
7
Al-Dhabyani W, Gomaa M, Khaled H, et al. Dataset of breast ultrasound images [J]. Data Brief, 2020, 28: 104863.
8
余镇, 吴凌云, 倪东, 等. 基于深度学习的胎儿颜面部超声标准切面自动识别 [J]. 中国生物医学工程学报, 2017, 36(3): 267-275.
9
Graf R. Fundamentals of sonographic diagnosis of infant hip dysplasia [J]. J Pediatr Orthop, 1984, 4(6): 735-740.
10
Gyurkovits Z, Sohár G, Baricsa A, et al. Early detection of developmental dysplasia of hip by ultrasound [J]. Hip Int, 2019: 1120700019879687. Online ahead of print.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 李晓妮, 卫青, 孟庆龙, 牛丽莉, 田月, 吴伟春, 朱振辉, 王浩. 超声心动图在孤立性左心室心尖发育不良疾病中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 937-942.
[3] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[4] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[5] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[6] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[7] 杜祖升, 赵博文, 张帧, 潘美, 彭晓慧, 陈冉, 毛彦恺. 应用二维斑点追踪成像技术评估孕周及心尖方向对中晚孕期正常胎儿左心房应变的影响[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 843-851.
[8] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[9] 包艳娟, 杨小红, 张涛, 赵胜, 张莉. 阴道斜隔综合征的超声诊断与临床分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 859-864.
[10] 汪洪斌, 张红霞, 何文, 杜丽娟, 程令刚, 张雨康, 张萌. 低级别阑尾黏液性肿瘤与阑尾黏液腺癌超声及超声造影特征分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 865-871.
[11] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[12] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[13] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[14] 宋勇, 李东炫, 王翔, 李锐. 基于数据挖掘法分析3 种超声造影剂不良反应信号[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 890-898.
[15] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
阅读次数
全文
10
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 1 0 0 9

  来源 本网站 其他网站
  次数 6 4
  比例 60% 40%

摘要
370
最新录用 在线预览 正式出版
0 0 370
  来源 本网站 其他网站
  次数 224 146
  比例 61% 39%