切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (05) : 472 -481. doi: 10.3877/cma.j.issn.1672-6448.2021.05.007

所属专题: 文献

心血管超声影像学

心脏黏液瘤多模态成像特点及诊断模式
林静茹1, 孙洋2, 李晓宁3, 陶瑾1, 王海苹4, 刘梦怡1, 王建德1, 权欣1, 李晓妮1, 朱振辉1, 王浩1, 吴伟春1,()   
  1. 1. 100037 中国医学科学院北京协和医学院国家心血管病中心阜外医院超声影像中心
    2. 100037 中国医学科学院北京协和医学院国家心血管病中心阜外医院实验诊断中心病理科
    3. 100037 中国医学科学院北京协和医学院国家心血管病中心阜外医院放射影像科
    4. 253000 山东德州,德州市人民医院超声科
  • 收稿日期:2020-02-25 出版日期:2021-05-01
  • 通信作者: 吴伟春
  • 基金资助:
    中国医学科学院心血管重点实验室建设项目(2019PT310025); 北京市科学技术委员会首都临床特色应用研究与成果推广(Z171100001017213)

Multimodality imaging for diagnosis of cardiac myxoma

Jingru Lin1, Yang Sun2, Xiaoning Li3, Jin Tao1, Haiping Wang4, Mengyi Liu1, Jiande Wang1, Xin Quan1, Xiaoni Li1, Zhenhui Zhu1, Hao Wang1, Weichun Wu1,()   

  1. 1. Department of Echocardiography, National Center for Cardiovascular Diseases and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
    2. Department of Pathology, National Center for Cardiovascular Diseases and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
    3. Department of Radiology, National Center for Cardiovascular Diseases and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
    4. Department of Ultrasound, Dezhou People's Hospital of Shandong Province, Dezhou 253000, China
  • Received:2020-02-25 Published:2021-05-01
  • Corresponding author: Weichun Wu
引用本文:

林静茹, 孙洋, 李晓宁, 陶瑾, 王海苹, 刘梦怡, 王建德, 权欣, 李晓妮, 朱振辉, 王浩, 吴伟春. 心脏黏液瘤多模态成像特点及诊断模式[J/OL]. 中华医学超声杂志(电子版), 2021, 18(05): 472-481.

Jingru Lin, Yang Sun, Xiaoning Li, Jin Tao, Haiping Wang, Mengyi Liu, Jiande Wang, Xin Quan, Xiaoni Li, Zhenhui Zhu, Hao Wang, Weichun Wu. Multimodality imaging for diagnosis of cardiac myxoma[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(05): 472-481.

目的

探究心脏黏液瘤(CM)多模态成像特点及其多模态诊断模式。

方法

回顾性研究2016年7月至2019年8月在阜外医院行二维经胸超声心动图检查初诊为CM的178例患者,以病理结果为金标准,将研究对象分为CM组和非CM组,根据超声心动图特点将CM组划分为典型CM组和非典型CM组。分析归纳各组患者的临床特征,二维经胸超声心动图、多层螺旋计算机断层摄影术(MSCT)和心脏磁共振成像(CMR)特点,采用t检验、χ2检验或Fisher确切概率法比较组间差异。

结果

178例初诊为CM的患者中有160例患者行手术治疗和病理检查(89.9%),病理证实CM患者150例,10例为非CM患者:低度恶性纤维黏液肉瘤1例,未分化多形性肉瘤1例,血管肉瘤1例,血管瘤2例,脂肪瘤2例,血栓3例。二维经胸超声心动图、MSCT、CMR诊断准确性分别为93.8%、96.3%、100%。典型CM组合并高血压和心房颤动的比例低于非典型CM组(25.4% vs 53.1%;2.5% vs 18.8%),差异具有统计学意义(χ2=8.978、9.027,P均=0.003);典型CM组左心房前后径、二尖瓣舒张早期峰值流速显著大于非典型CM组[(39.21±6.34)mm vs (35.92±5.72)mm;(1.59±1.67)m/s vs (0.90±0.25)m/s],差异具有统计学意义(t=2.357、2.040,P=0.020、0.043);二维经胸超声心动图成像显示,非典型CM组平均长径显著小于典型CM组[(34.81±17.43)mm vs (45.99±16.73)mm],瘤蒂或基底宽度显著大于典型CM组[(13.02±7.28)mm vs (9.97±4.73)mm],差异具有统计学意义(t=3.324、-2.506,P=0.001、0.014),非典型CM的分布、附着部位、形态、活动度、瘤蒂存在情况以及房室瓣口梗阻情况与典型CM比较差异均具有统计学意义(P均<0.05);MSCT成像显示CM以低密度为主,中等混杂密度比例和存在强化的比例高于典型CM,但差异无统计学意义(P均>0.05);CMR成像显示非典型CM T1、T2加权像信号强度与典型CM类似(P均>0.05)。非CM占位平均长径小于典型CM,但差异没有统计学意义(P>0.05),平均短径与典型CM类似,瘤蒂或基底的宽度显著大于典型CM[(13.35±6.80)mm vs (9.97±4.73)mm],差异具有统计学意义(t=-2.026,P=0.046);非CM占位分布情况、附着情况、形态、瘤蒂存在情况及活动度与典型CM差异均具有统计学意义(P均<0.05)。综合以上分析,非CM占位超声心动图特点更接近非典型CM。非CM占位的MSCT以混杂密度为主,与典型CM差异有统计学意义(P<0.05),部分存在强化(P>0.05)。非CM占位T1加权像以等信号和高信号为主,T2加权像以高信号为主,1/2患者存在早期灌注、延迟强化,与典型CM的CMR特点差异均无统计学意义(P均>0.05)。

结论

基于CM多模态成像特点,心脏多模态影像学检查应综合应用:超声心动图评估可疑CM的典型性,对考虑为非典型CM的心脏占位进一步行心脏CT和CMR检查评估占位良恶性及组织类型,有效提高CM诊断效能,降低误诊率,有助于做好术前规划。

Objective

To investigate the multimodality imaging features of cardiac myxoma (CM) and explore the multimodality diagnosis model of CM.

Methods

One hundred and seventy-eight patients who were initially screened for CM by two-dimensional transthoracic echocardiography at Fuwai Hospital from July 2016 to August 2019 were retrospectively included in our study. Using pathological results as the gold standard, the subjects were divided into either a CM group or a non-CM group.The CM group was further divided into a typical CM subgroup and an atypical CM subgroup according to the characteristics of echocardiography. The clinical characteristics and the imaging features of echocardiography, multi-slice computed tomography (MSCT), and cardiac magnetic resonance imaging (CMR) were compared between groups by t-test, chi-squared test, or Fisher's exact test.

Results

Of the 178 patients with an initial diagnosis of CM, 160 (89.9%) underwent surgical treatment and pathological examination (89.9%); 150 patients were diagnosed with CM, 1 with low-grade fibromyxoid sarcoma, 1 with undifferentiated pleomorphic sarcoma, 1 with angiosarcoma, 2 with hemangioma, 2 with lipoma, and 3 with thrombosis. The diagnostic accuracies of echocardiography, MSCT, and CMR were 93.8 %, 96.3%, and 100%, respectively. The proportions of patients with hypertension and atrial fibrillation in the typical CM subgroup were significantly lower than those of the atypical CM subgroup (25.4% vs 53.1%, χ2=8.978, P=0.003; 2.5% vs 18.8%; χ2=9.027, P=0.003); the left atrial anteroposterior diameter and the early diastolic peak flow velocity of the mitral valve were significantly higher in the typical CM subgroup than in the atypical CM subgroup [(39.21±6.34) mm vs (35.92±5.72) mm, t=2.357, P=0.020; (1.59±1.67) m/s vs (0.90±0.25) m/s; t=2.040; P=0.043]. The average long diameter of atypical CM was significantly smaller than that of typical CM [(34.81±17.43) mm vs (45.99±16.73) mm; t=3.324, P=0.001], and the width of tumor pedicle or base was significantly larger than that of typical CM [(13.02±7.28) mm vs (9.97±4.73) mm; t=-2.506, P=0.014]. The distribution, attachment site, morphology, mobility, presence of tumor pedicle, and presence of atrioventricular valve orifice obstruction in atypical CM were significantly different from those in typical CM (P<0.05 for all). Low-attenuation was the main MSCT feature of atypical CM, and the proportion of patients with medium or mixed attenuation and enhancement was higher than that of typical CM, but the difference was not statistically significant (P>0.05). The signal intensity of atypical CM on T1 and T2 weighted images was similar to that of typical CM (both P>0.05). The average long diameter of the non-CM masses was smaller than that of typical CM, but the difference was not statistically significant (P>0.05). The average short diameter was similar to the typical CM, and the width of the tumor pedicle or base was significantly larger than that of the typical CM [(13.35±6.80) mm vs (9.97±4.73) mm; t=-2.026, P=0.046]. The distribution, attachment site, morphology, presence of tumor pedicle, and mobility of non-CM masses were significantly different from those of typical CM (P<0.05 for all). Based on the above analysis, the echocardiographic characteristics of non-CM masses were similar to those of atypical CM. The main MSCT feature of non-CM masses was mixed attenuation, which was different from that of typical CM (P<0.05). The non-CM masses were iso-hyperintense on T1-weighted images and hyperintense on T2-weighted images, and showed enhancement at about one-half of cases on first-pass perfusion imaging and late gadolinium enhancement imaging, which did not show significant difference from those of typical CM (P>0.05 for all).

Conclusion

Based on the multimodality imaging features of CM, echocardiography should be used to discriminate typical CM from atypical CM and further cardiac CT and CMR are used to distinguish between malignant and benign tumors and to assess histological types of cardiac masses considered as atypical CM, which can improve the diagnostic efficiency of CM, reduce the misdiagnosis rate, and contribute to preoperative planning.

表1 160例可疑CM患者人口学特征、临床特点、超声参数
参数 典型CM组(n=118) 非典型CM组(n=32) 统计值 P CM组(n=150) 非CM组(n=10) 统计值 P
人口学特征

年龄(岁,

x¯
±s

53.8±11.2 55.3±20 t=-0.421 0.676 54.1±13.4 54.2±20.8 t=-0.014 0.989

女性[例(%)]

80(67.8) 22(68.8) χ2=0.011 0.918 102(68.0) 5(50.0) χ2=0.679 0.410

BMI(kg/m2

x¯
±s

24.31±2.83 25.25±3.52 t=-1.410 0.161 24.50±3.00 25.37±3.68 t=-0.687 0.493

BSA(m2

x¯
±s

1.68±0.16 1.67±0.23 t=0.286 0.776 1.68±0.18 1.80±0.26 t=-1.506 0.135
合并疾病[例(%)]

高血压

30(25.4) 17(53.1) χ2=8.978 0.003 47(31.3) 5(50.0) χ2=0.760 0.383

糖尿病

14(11.9) 5(15.6) χ2=0.072 0.789 19(12.7) 2(20.0) χ2=0.033 0.856

高脂血症

20(16.9) 8(25.0) χ2=1.075 0.300 28(18.7) 3(30.0) χ2=0.216 0.642

冠心病

15(12.7) 5(15.6) χ2=0.019 0.891 20(13.3) 2(20.0) χ2=0.014 0.906

脑梗死

16(13.6) 4(12.5) χ2=0.000 1.000 20(13.3) 2(20.0) χ2=0.014 0.906

肺动脉高压

15(12.7) 2(6.3) χ2=0.502 0.479 17(11.3) 2(20.0) χ2=0.100 0.752

外周血管疾病

7(5.9) 4(12.5) χ2=0.778 0.378 11(7.3) 0 - 1.000

心房颤动

3(2.5) 6(18.8) χ2=9.027 0.003 9(6.0) 0 - 1.000

其他心律失常

5(4.2) 1(3.1) χ2=0.000 1.000 6(4.0) 2(20.0) - 0.081

心肌梗死

2(1.7) 1(3.1) - 0.516 3(2.0) 0 - 1.000
心功能NYHA分级[例(%)] χ2=0.003 0.955 χ2=0.150 0.698

Ⅰ级/Ⅱ级

106(89.8) 28(87.5) 134(89.3) 8(80.0)

Ⅲ级/Ⅳ级

12(10.2) 4(12.5) 16(10.7) 2(20.0)
症状体征[例(%)]

气短喘息

46(39.0) 10(31.3) χ2=0.643 0.422 56(37.3) 5(50.0) χ2=0.214 0.644

心悸

43(36.4) 12(37.5) χ2=0.012 0.912 55(36.7) 2(20.0) χ2=0.525 0.469

胸闷

35(29.7) 9(28.1) χ2=0.029 0.866 44(29.3) 2(20.0) χ2=0.073 0.787

胸痛

9(7.6) 4(12.5) χ2=0.265 0.607 13(8.7) 0 - 1.000

晕厥

12(10.2) 2(6.3) χ2=0.111 0.739 14(9.3) 0 - 0.602

呼吸困难

10(8.5) 3(9.4) χ2=0.000 1.000 13(8.7) 2(20.0) - 0.238

乏力

8(6.8) 5(15.6) χ2=1.496 0.221 13(8.7) 2(20.0) - 0.238
超声参数(
x¯
±s

LVEDD(mm)

47.21±4.74 46.28±4.51 t=0.884 0.378 47.02±4.69 48.33±4.93 t=-0.666 0.506

LAD(mm)

39.21±6.34 35.92±5.72 t=2.357 0.020 38.56±6.36 42.00±5.80 t=-1.301 0.196

LVEF(%)

63.04±4.40 63.32±3.65 t=-0.294 0.769 63.10±4.25 64.33±3.83 t=-0.700 0.485

EM(m/s)

1.59±1.67 0.90±0.25 t=2.040 0.043 1.45±1.52 1.43±0.99 t=0.033 0.974

ET(m/s)

0.63±0.26 0.72±0.33 t=-1.326 0.194 0.65±0.27 0.62±0.12 t=0.255 0.799
表2 CM及非CM占位的二维经胸超声心动图成像特点
图1 男性,63岁,右心房血管肉瘤(图a~d白色箭头所示)。二维经胸超声心动图大动脉短轴切面(图a)显示右心房一类圆形分叶状团块,大小35 mm×42 mm×58 mm,回声较均匀,轮廓清晰,活动度小。多层螺旋CT(图b)显示右心房内低密度影,呈分叶状,病变与临近心包关系密切,占据右心耳。心脏磁共振成像示右心房腔内巨大团块占位,无明显活动性,T1加权像等信号(图c),T2加权像稍高信号(图d),信号不均匀,病变与右方壁及心包边界不清,上腔静脉部分受压。血管肉瘤病理图片(图e,f)示:梭形肿瘤细胞呈编织状、漩涡状排列,核中度异型性,可见核分裂象及病理性核分裂象,免疫组织化学CD34(+),CD31(+),Ki67(index 60%)(×200)
表3 CM及非CM占位的MSCT成像特点
图2 男性,50岁,左心房黏液瘤(图a~e白色箭头所示)。二维经胸超声心动图胸骨旁左心室长轴切面(图a)显示左心房一长椭圆形中等回声团块,大小约58 mm×35 mm×45 mm,舒张期横跨二尖瓣;心尖四腔心切面(图b)一长椭圆形占位附着于房间隔卵圆窝左房侧。多层螺旋计算机断层摄影术增强扫描(图c)呈低密度,动脉期CT值53~79 HU,延迟期CT值45 HU。心脏磁共振成像示T1、T2加权像等信号(图d,e)。心脏黏液瘤病理图片(图f):肿瘤内含大量黏液样基质,肿瘤细胞排列呈小团状、条索样,局部出血(HE×100)
表4 CM及非CM占位的CMR成像特点[例(%)]
1
Reynen K.Cardiac myxomas [J]. N Engl J Med, 1995,333(24):1610-1617.
2
Wang Z, Chen S, Zhu M, et al. Risk prediction for emboli and recurrence of primary cardiac myxomas after resection [J]. J Cardiothorac Surg, 2016, 11: 22.
3
Colin GC, Gerber BL, Amzulescu M, et al. Cardiac myxoma: a contemporary multimodality imaging review [J]. Int J Cardiovascr Imaging, 2018, 34(11): 1789-1808.
4
Goldberg HP, Glenn F, Dotter CT, et al. Myxoma of the left atrium; diagnosis made during life with operative and post-mortem findings [J]. Circulation, 1952, 6(5): 762-767.
5
Effert S, Domanig E. Diagnosis of intra-auricular tumors & large thrombi with the aid of ultrasonic echography [J]. Dtsch Med Wochenschr, 1959, 84(1): 6-8.
6
Lackner K, Heuser L, Friedmann G, et al. Computer cardio-tomography for tumours of the left atrium [J]. Rofo, 1978, 129(6): 735-739.
7
Amparo EG, Higgins CB, Farmer D, et al. Gated MRI of cardiac and paracardiac masses: initial experience [J]. AJR Am J Roentgenol, 1984, 143(6): 1151-1156.
8
Agostini D, Babatasi G, Galateau F, et al. Detection of cardiac myxoma by F-18 FDG PET [J]. Clin Nucl Med, 1999, 24(3): 159-160.
9
李岩, 耿斌, 常凤玲, 等. 经胸超声心动图诊断心房占位性病变 [J]. 中国医学影像技术, 2019, 35(10): 1486-1489.
10
甘玲, 高云华, 刘伟超, 等. 经食管超声心动图与心肌超声造影在心脏黏液瘤中的临床价值 [J]. 中国临床医学影像杂志, 2018, 29(6): 409-412.
11
Strachinaru M, Damry N, Duttmann R, et al. Ultrasound contrast quantification for the diagnosis of intracardiac masses [J]. JACC Cardiovasc Imaging, 2016, 9(6): 747-750.
12
汤乔颖, 邓又斌, 毕小军, 等. 声学造影对心脏占位病变性质的鉴别诊断价值 [J/CD]. 中华医学超声杂志(电子版), 2019, 16(10): 742-748.
13
Young PM, Foley TA, Araoz PA, et al. Computed tomography imaging of cardiac masses [J]. Radiol Clin North Am, 2019, 57(1): 75-84.
14
Haji K, Nasis A. Radiological characteristics of atrial myxoma in cardiac computed tomography [J]. J Cardiovasc Comput Tomography, 2017, 11(3): 234-236.
15
Hong YJ, Hur J, Kim YJ, et al. Dual-energy cardiac computed tomography for differentiating cardiac myxoma from thrombus [J]. Int J Cardiovasc Imaging, 2014, 30 (Suppl 2): 121-128.
16
Al JO, Abu SW, Patel AP, et al. Use of three-dimensional models to assist in the resection of malignant cardiac tumors [J]. J Card Surg, 2016, 31(9): 581-583.
17
Colin GC, Dymarkowski S, Gerber B, et al. Cardiac myxoma imaging features and tissue characteristics at cardiovascular magnetic resonance [J]. Int J Cardiol, 2016, 202: 950-951.
18
Fussen S, De Boeck W, Zellweger MJ, et al. Cardiovascular magnetic resonance imaging for diagnosis and clinical management of suspected cardiac masses and tumours [J]. Eur Heart J, 2011, 32(12): 1551-1560.
19
Caspar T, El GS, Ohana M, et al. Magnetic resonance evaluation of cardiac thrombi and masses by T1 and T2 mapping: an observational study [J]. Int J Cardiovasc Imaging, 2017, 33(4): 551-559.
20
Kubler D, Grafe M, Schnackenburg B, et al. T1 and T2 mapping for tissue characterization of cardiac myxoma [J]. Int J Cardiol, 2013, 169(1): e17-e20.
21
Motwani M, Kidambi A, Herzog BA, et al. MR imaging of cardiac tumors and masses: a review of methods and clinical applications [J]. Radiology, 2013, 268(1): 26-43.
22
Liddy S, McQuade C, Walsh KP, et al. The assessment of cardiac masses by cardiac CT and CMR including Pre-op 3D reconstruction and planning [J]. Curre Cardiol Rep, 2019, 21(9): 103.
23
Oshima H, Hara M, Kono T, et al. Cardiac hemangioma of the left atrial appendage: CT and MR findings [J]. J Thorac Imaging, 2003, 18(3): 204-206.
24
Yu J, Cui H, Ji G, et al. Clinical and imaging manifestations of primary cardiac angiosarcoma [J]. BMC Medical Imaging, 2019, 19(1): 16.
25
Li Y, Wang B, Zhang L, et al. Rare case of pericardial angiosarcoma [J]. Circ Heart Fail, 2018, 11(10): e5342.
26
Valles-Torres J, Izquierdo-Villarroya MB, Vallejo-Gil JM, et al. Cardiac undifferentiated pleomorphic sarcoma mimicking left atrial myxoma [J]. J Cardiothorac Vasc Anesth, 2019, 33(2): 493-496.
27
Jakowski JD, Wakely PJ. Primary intrathoracic low-grade fibromyxoid sarcoma [J]. Hum Pathol, 2008, 39(4): 623-628.
28
Rahbar K, Seifarth H, Schafers M, et al. Differentiation of malignant and benign cardiac tumors using 18F-FDG PET/CT [J]. J Nucl Med, 2012, 53(6): 856-863.
[1] 李晓妮, 卫青, 孟庆龙, 牛丽莉, 田月, 吴伟春, 朱振辉, 王浩. 超声心动图在孤立性左心室心尖发育不良疾病中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 937-942.
[2] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[3] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[4] 王秋莲, 张莹, 李春敏, 徐树明, 张玉奇. 胎儿主动脉弓部梗阻伴发复杂心内畸形的产前超声诊断及漏误诊分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 718-725.
[5] 莫莹, 李文秀, 李刚, 王霄芳, 王强, 丁文虹. 超声心动图在三尖瓣下移畸形中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 702-708.
[6] 王益佳, 周青, 曹省, 袁芳洁, 周妍, 张梅. 中国经胸超声心动图检查存图及报告质控现状分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 657-663.
[7] 曹雨欣, 毛卓君, 梁嘉赫, 伊江浦, 张泽凯, 马文帅, 陈云涛, 李晓倩, 张宇新, 曹铁生, 袁丽君. 3D打印心脏模型在模拟左心耳封堵术临床教学中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 602-607.
[8] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[9] 王岚, 徐斌胜, 谢乐. 肥厚型心肌病的经胸超声心动图诊断与心电图表现特征[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 593-596.
[10] 夏靖涵, 林凤娇, 王胰, 丁戈琦, 张清凤, 张红梅, 谢盛华, 李明星, 尹立雪, 李文华. 二尖瓣空间变化联合左心房应变对肥厚型心肌病合并左心室流出道梗阻的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 585-592.
[11] 孔莹, 惠品晶, 丁亚芳, 周炳元. 基于对比增强经颅多普勒的多模式超声评估卵圆孔未闭相关右向左分流的临床意义[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 345-351.
[12] 卢天祺, 张巍, 周康, 毕士玉, 张羽, 杨秀华. 血流向量成像技术在不同Child-Pugh分级乙肝患者左心功能评价中的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 352-360.
[13] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[14] 张帧, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 陈阳. 二维斑点追踪技术评价正常中晚孕期胎儿右心房功能的初步研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 384-390.
[15] 张盼盼, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 林仙方, 惠姗姗, 沈婷婷. 胎儿左心房后间隙指数在胎儿肺动脉瓣缺如综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 391-398.
阅读次数
全文


摘要