切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (04) : 377 -383. doi: 10.3877/cma.j.issn.1672-6448.2024.04.005

妇产科超声影像学

一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用
罗刚1, 泮思林1,(), 孙玲玉2, 李志新1, 陈涛涛2, 乔思波3, 庞善臣3   
  1. 1. 266034 青岛大学附属妇女儿童医院心脏中心
    2. 266034 青岛大学附属妇女儿童医院超声科
    3. 266580 青岛,中国石油大学(华东)计算机科学与技术学院
  • 收稿日期:2023-09-28 出版日期:2024-04-01
  • 通信作者: 泮思林
  • 基金资助:
    国家自然科学基金(82271725); 泰山学者工程资助(2018)

Classification of right ventricular hypoplasia in fetuses diagnosed with pulmonary atresia with an intact ventricular septum or critical pulmonary stenosis via a new semantic parsing network model

Gang Luo1, Silin Pan1,(), Lingyu Sun2, Zhixin Li1, Taotao Chen2, Sibo Qiao3, Shanchen Pang3   

  1. 1. Heart Center, Women and Children's Hospital, Qingdao University, Qingdao 266034, China
    2. Department of Ultrasonography, Women and Children's Hospital, Qingdao University, Qingdao 266034, China
    3. School of Computer Science and Technology, China University of Petroleum, Qingdao 266580, China
  • Received:2023-09-28 Published:2024-04-01
  • Corresponding author: Silin Pan
引用本文:

罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.

Gang Luo, Silin Pan, Lingyu Sun, Zhixin Li, Taotao Chen, Sibo Qiao, Shanchen Pang. Classification of right ventricular hypoplasia in fetuses diagnosed with pulmonary atresia with an intact ventricular septum or critical pulmonary stenosis via a new semantic parsing network model[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(04): 377-383.

目的

分析评价一种新型语义网络分析模型SPReCHD:残差学习诊断系统模块(RLDS)和双路径链式多尺度门控轴心变压器网络模块(DPC-MSGATNet),在室间隔完整型肺动脉闭锁(PA/IVS)和危重肺动脉瓣狭窄(CPS)胎儿超声心动图四腔心视图数据集中评估右心发育不良程度分级的性能。

方法

回顾性收集2017年6月至2022年12月青岛大学附属妇女儿童医院350例24~28周胎龄的PA/IVS和CPS胎儿的1650张单幅超声心动图四腔心视图建立实验数据集。根据右心发育不良程度对建立的SPReCHD模型进行训练、验证和测试,评估模型精确度、召回率及F1值等性能指标;与高级医师基于超声指标、右心室形态及出生结局等多维度信息对测试集做出的评估结果进行比较,采用Kappa检验观察评估的一致性。

结果

SPReCHD模型在训练集、验证集及测试集对右心发育不良程度分级评估的精确度分别为93.82%、94.34%和94.68%,召回率分别为90.54%、91.38%和90.89%,F1值分别为92.10%、92.82%和92.67%。在测试集中,SPReCHD模型与高级儿童心血管医师评估结果一致性良好(Kappa值=0.724,P<0.001)。

结论

SPReCHD模型在训练集、验证集及测试集对右心发育不良程度分级的评估性能优异。该模型对PA/IVS和CPS胎儿右心发育不良程度分级评估水平与高级医师评估结果一致性好,为进一步提出精准评估标准奠定基础。

Objective

To evaluate the performance of a new semantic parsing network (SPReCHD model: the multi-level residual mixed attention mechanism module [RLDS] and the dual path chain multi-scale gated axial transformer network module [DPC-MSGATNet]) in assessing the degree of right ventricular hypoplasia in fetuses with pulmonary atresia with intact ventricular septum (PA/IVS) or critical pulmonary stenosis (CPS) via fetal echocardiography four-chamber views.

Methods

This study retrospectively collected 1650 single-frame four-chamber views of 350 PA/IVS and CPS fetuses at 24 to 28 weeks gestation at Women and Children's Hospital, Qingdao University between June 2017 to December 2022 to establish an experimental dataset. The established SPReCHD model was trained, validated, and tested to grade right heart hypoplasia, with an evaluation of model accuracy, recall rate, and F1 score. The evaluation results of the SPReCHD model and senior physicians in the test set were compared based on multi-dimensional information such as ultrasound indicators and right ventricular morphology. Kappa test was used to observe the consistency of the evaluation results.

Results

The SPReCHD model showed a precision of 93.82%, 94.34%, and 94.68%, recall rate of 90.54% , 91.38%, and 90.89%, and F1 score of 92.10%, 92.82%, and 92.67% in the training, validation, and test sets for evaluating the degree of right ventricular hypoplasia, respectively. In the test set, there was good consistency between the evaluation results of senior physicians and the SPReCHD model (Kappa=0.724, P<0.001).

Conclusion

The SPReCHD model has excellent performance in evaluating the degree of right ventricular hypoplasia in the training, validation, and test sets, achieving the expected level of research and development. There is a high level of concordance between the evaluation results for fetal right ventricular dysplasia by the model and senior physicians in fetuses with PA/IVS and CPS, thus laying a foundation for proposing precise evaluation standards.

图1 SPReCHD模型框架结构示意图
图2 SPReCHD模型评估胎儿右心发育不良程度分级示意图。图a~d为重度发育不良;图e~h为中度发育不良;图i~l为轻度发育不良(图a、c、e、g、i、k为胎儿超声心动图四腔心视图;图b、d、f、h、g、l为对应的胎儿心脏四腔心分割结构,分割图像中四个心腔轮廓与超声图像的解剖轮廓高度接近)
表1 SPReCHD模型在实验数据集中对胎儿右心发育不良程度分级评估的准确性评价
表2 SPReCHD模型与医师对测试集的评估分析结果
1
Vall Camell M, Rodríguez-Fanjul J, Bautista Rodríguez C, et al. Percutaneous management of pulmonary atresia with intact ventricular septum and critical pulmonary stenosis[J]. An Pediatr (Barc), 2019, 91(5): 336-343.
2
Villalaín C, Moon-Grady AJ, Herberg U, et al. Prediction of postnatal circulation in pulmonary atresia/critical stenosis with intact ventricular septum: systematic review and external validation of models[J]. Ultrasound Obstet Gynecol, 2023, 62(1): 14-22.
3
Hogan WJ, Grinenco S, Armstrong A, et al. Fetal cardiac intervention for pulmonary atresia with intact ventricular septum: international fetal cardiac intervention registry[J]. Fetal Diagn Ther, 2020, 7:1-9.
4
Luo G, Zhang B, Wang D, et al. Fetal pulmonary valvuloplasty for pulmonary atresia with intact ventricular septum: a single-center clinical experience[J]. Chin Med J (Engl), 2023, 136(6):740-742.
5
Luo G, Gao S, Sun H, et al. Valvuloplasty of fetal pulmonary atresia with intact ventricular septum and hypoplastic right heart: Mid-term follow-up results[J]. J Interv Med, 2022, 5(4):196-199.
6
孙宏晓, 罗刚, 泮思林, 等. 6例未行宫内干预的室间隔完整型肺动脉闭锁伴右心发育不良胎儿的生后处理及随访[J].中华围产医学杂志, 2022, 25(8): 576-581.
7
Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, et al. Machine learning in fetal cardiology: what to expect[J]. Fetal Diagn Ther, 2020, 47(5): 363-372.
8
罗刚, 泮思林, 乔思波, 等. 深度学习技术在胎儿超声心动图图像自动识别中的应用[J].实用医学杂志, 2022, 38(14): 1830-1833.
9
Qiao S, Pang S, Luo G, et al. DPC-MSGATNet: dual-path chain multi-scale gated axial-transformer network for four-chamber view segmentation in fetal echocardiography[J]. Complex Intell Syst, 2023, 9(4): 4503-4519.
10
Qiao S, Pang S, Sun Y, et al. SPReCHD: four-chamber semantic parsing network for recognizing fetal congenital heart disease in medical metaverse[J]. IEEE J Biomed Health Inform, 2022, PP.DOI: 10.1109/JBHI.2022.3218577. Online ahead of print.
11
孟红, 李慧, 王剑鹏, 等. 室间隔完整型肺动脉闭锁和重度肺动脉瓣狭窄患儿的右心室发育分级及术式选择[J].中国循环杂志, 2021, 36(11): 1101-1106.
12
Gómez Montes E, Herraiz I, Mendoza A, et al. Fetal intervention in right outflow tract obstructive disease: selection of candidates and results[J]. Cardiol Res Pract, 2012, 2012: 592403.
13
Tulzer A, Arzt W, Gitter R, et al. Immediate effects and outcome of in-utero pulmonary valvuloplasty in fetuses with pulmonary atresia with intact ventricular septum or critical pulmonary stenosis[J]. Ultrasound Obstet Gynecol, 2018, 52(2):230-237.
14
郑景浩, 李守军. 先天性心脏病外科治疗中国专家共识(四):室间隔完整型肺动脉闭锁[J].中国胸心血管外科临床杂志, 2020, 27(5): 479-483.
15
罗刚, 泮思林, 万浩, 等. 室间隔完整的肺动脉闭锁胎儿心脏介入治疗五例中期随访[J]. 中华儿科杂志, 2021, 59(9): 782-786.
16
Andersen S, Nielsen-Kudsk JE, Vonk Noordegraaf A, et al. Right ventricular fibrosis[J]. Circulation, 2019, 139(2): 269-285.
17
Li B, Luo F, Luo X, et al. Effects of atrial fibrosis induced by mitral regurgitation on atrial electrophysiology and susceptibility to atrial fibrillation in pigs[J]. Cardiovasc Pathol, 2019, 40: 32-40.
18
Chikkabyrappa SM, Loomba RS, Tretter JT. Pulmonary atresia with an intact ventricular septum: preoperative physiology, imaging, and management[J]. Semin Cardiothorac Vasc Anesth, 2018, 22(3): 245-255.
19
Gijtenbeek M, Haak MC, Ten Harkel ADJ, et al. Critical coarctation of the aorta in selective fetal growth restriction and the role of coronary stent implantation[J]. Fetal Diagn Ther, 2020,27: 1-9.
20
王德辉, 邓学东. 胎儿室间隔完整型肺动脉闭锁的超声心动图评估及预后分析[J/OL].中华医学超声杂志(电子版), 2023, 20(12): 1266-1270.
21
何冠南, 李胜利. 人工智能在胎儿超声心动图应用中的研究进展[J/OL].中华医学超声杂志(电子版), 2023, 20(5): 554-556.
22
Huang HM, Lin LF, Tong RF, et al. UNet3+: A full-scale connected UNet for medical image segmentation. Proceedings of the 2020 international conference on acoustics, speech and signal processing[J]. Barcelona: IEEE, 2020, 1055-1059.
23
An S, Lv J, Zhu H, et al. Fetal heart and descending aorta detection in four-chamber view of fetal echocardiography[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 2722-2725.
24
Pu B, Lu Y, Chen J, et al. Mobile UNet-FPN: A semantic segmentation model for fetal ultrasound four-chamber segmentation in edge computing environments[J]. IEEE J Biomed Health Inform, 2022, 26(11): 5540-5550.
25
An S, Zhou X, Zhu H, et al. Simultaneous segmentation of four cardiac chambers in fetal echocardiography[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 3122-3126.
26
王金祥, 付立军, 尹鹏滨, 等. 基于CNN与Transformer的医学图像分割[J].计算机系统应用, 2023, 32(4): 141-148.
[1] 李晓妮, 卫青, 孟庆龙, 牛丽莉, 田月, 吴伟春, 朱振辉, 王浩. 超声心动图在孤立性左心室心尖发育不良疾病中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 937-942.
[2] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[3] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[4] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[5] 杜祖升, 赵博文, 张帧, 潘美, 彭晓慧, 陈冉, 毛彦恺. 应用二维斑点追踪成像技术评估孕周及心尖方向对中晚孕期正常胎儿左心房应变的影响[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 843-851.
[6] 张商迪, 赵博文, 潘美, 彭晓慧, 陈冉, 毛彦恺, 陈阳, 袁华, 陈燕. 中晚孕期胎儿心房内径定量评估心房比例失调胎儿心脏畸形的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 785-793.
[7] 王益佳, 周青, 曹省, 袁芳洁, 周妍, 张梅. 中国经胸超声心动图检查存图及报告质控现状分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 657-663.
[8] 顾莉莉, 姜凡. 安徽省超声产前筛查切面图像质量现状调查情况及分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 671-674.
[9] 莫莹, 李文秀, 李刚, 王霄芳, 王强, 丁文虹. 超声心动图在三尖瓣下移畸形中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 702-708.
[10] 王秋莲, 张莹, 李春敏, 徐树明, 张玉奇. 胎儿主动脉弓部梗阻伴发复杂心内畸形的产前超声诊断及漏误诊分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 718-725.
[11] 曹雨欣, 毛卓君, 梁嘉赫, 伊江浦, 张泽凯, 马文帅, 陈云涛, 李晓倩, 张宇新, 曹铁生, 袁丽君. 3D打印心脏模型在模拟左心耳封堵术临床教学中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 602-607.
[12] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[13] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[14] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?