切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (05) : 440 -446. doi: 10.3877/cma.j.issn.1672-6448.2022.05.009

浅表器官超声影像学

基于甲状腺成像报告和数据系统分类的计算机辅助诊断系统对甲状腺癌超声诊断的辅助价值
金壮1, 朱亚琼2, 张诗杰3, 宋青2, 罗渝昆2,()   
  1. 1. 100853 北京,解放军总医院第一医学中心超声科;110016 沈阳,北部战区总医院超声科
    2. 100853 北京,解放军总医院第一医学中心超声科
    3. 100871 北京大学前沿交叉学科研究院
  • 收稿日期:2020-05-21 出版日期:2022-05-01
  • 通信作者: 罗渝昆
  • 基金资助:
    国家自然科学基金(81771834)

Auxiliary value of computer-assisted diagnosis system based on thyroid imaging reporting and data system for ultrasound diagnosis of thyroid cancer

Zhuang Jin1, Yaqiong Zhu2, Shijie Zhang3, Qing Song2, Yukun Luo2,()   

  1. 1. Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Department of Ultrasound, General Hospital of Northern Theater Command, Shenyang 110016, China
    2. Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
    3. Institute of Frontier Interdisciplinary Disciplines, Peking University, Beijing 100871, China
  • Received:2020-05-21 Published:2022-05-01
  • Corresponding author: Yukun Luo
引用本文:

金壮, 朱亚琼, 张诗杰, 宋青, 罗渝昆. 基于甲状腺成像报告和数据系统分类的计算机辅助诊断系统对甲状腺癌超声诊断的辅助价值[J]. 中华医学超声杂志(电子版), 2022, 19(05): 440-446.

Zhuang Jin, Yaqiong Zhu, Shijie Zhang, Qing Song, Yukun Luo. Auxiliary value of computer-assisted diagnosis system based on thyroid imaging reporting and data system for ultrasound diagnosis of thyroid cancer[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(05): 440-446.

目的

探讨基于甲状腺成像报告和数据系统(TI-RADS)分类的计算机辅助诊断(CAD)系统对超声医师诊断甲状腺癌的辅助价值。

方法

收集2018年10月至2019年3月在国内5家医院的400例甲状腺结节超声图像进行多中心回顾性研究。采用由北京大学前沿交叉学科研究院研发的基于TI-RADS分类的CAD系统,超声医师诊断甲状腺癌的诊断模式分为无CAD模式和CAD模式,11名具有不同工作经验的超声医师(低年资超声医师4名,中年资超声医师4名,高年资超声医师3名)在上述2种模式下诊断甲状腺癌。比较2种诊断模式的诊断效能及读片时间:绘制CAD系统和超声医师诊断甲状腺癌的受试者工作特征(ROC)曲线,应用DeLong方法比较2种模式下曲线下面积(AUC)的差异;应用配对t检验比较2种模式的读片时间差异。

结果

在CAD模式下,所有超声医师诊断甲状腺癌的AUC值较无CAD模式有显著提高[0.848(0.837~0.858) vs 0.800(0.788~0.812)],差异具有统计学意义(P<0.001);敏感度从73.8%(95%CI:71.9%~75.6%)提升到82.7%(95%CI:81.0%~84.3%),差异具有统计学意义(χ2=9.870,P<0.001);特异度从86.2%(84.7%~87.6%)提升到86.9%(85.4%~88.3%),但差异无统计学意义(χ2=0.021,P=0.379)。进行亚组分析时,在CAD模式下,低年资超声医师和中年资超声医师诊断甲状腺癌的AUC值较无CAD模式有显著提高(0.840 vs 0.740;0.848 vs 0.814),差异具有统计学意义(P<0.001、=0.001),但高年资超声医师诊断甲状腺癌的AUC值较无CAD模式无明显变化(0.859 vs 0.861,P=0.861)。在CAD模式下,所有超声医师的阅片时间较无CAD模式减少[(20.2±8.2)s vs(22.7±9.6)s],差异具有统计学意义(t=-23.9,P<0.001)。

结论

CAD模式有助于低年资超声医师和中年资超声医师对甲状腺癌的诊断,同时缩短了诊断时间。

Objective

To assess the value of a computer aided diagnosis (CAD) system based on the classification of thyroid imaging reporting and data system (TI-RADS) in the ultrasound diagnosis of thyroid cancer.

Methods

From October 2018 to March 2019, 400 cases of thyroid nodules were collected at five domestic hospitals for a multi-center retrospective study. A CAD system based on the TI-RADS classification developed by Peking University was used. With and without the aid of the CAD system, 11 radiologists with different experiences (4 junior radiologists, 4 intermediate-level radiologists, and 3 senior radiologists) diagnosed thyroid cancer, respectively. The area under the receiver operating characteristic (ROC) curve (AUC) was compared using the DeLong method, the sensitivity and specificity were compared using the paired chi-square test, and the reading time was compared using the paired t test.

Results

With the aid of the CAD system, the average AUC of all radiologists for diagnosing thyroid cancer was significantly higher than that without the aid of the CAD system [0.800 (0.788-0.812) vs 0.848 (0.837-0.858), P<0.001]; the sensitivity significantly increased from 73.8% (71.9%-75.6%) to 82.7% (81.0%-84.3%, χ2=9.870, P<0.001), and the specificity increased from 86.2% (84.7%-87.6%) to 86.9% (85.4%-88.3%), but there was no statistical difference (χ2=0.021, P=0.379). When performing subgroup analysis, with the aid of the CAD system, the AUC values of junior and intermediate-level radiologists for diagnosing thyroid cancer were significantly higher than those without the aid of the CAD system (junior radiologists: 0.740 vs 0.840, P<0.001; intermediate-level radiologists: 0.814 vs 0.848, P=0.001), but the AUC value of senior radiologists was not significantly different from that without the aid of the CAD system (0.861 vs 0.859, P=0.861). With the aid of the CAD system, the reading time of all radiologists was significantly shortened compared with that without the aid of the CAD system (22.7±9.6 vs 20.2±8.2; P<0.001).

Conclusion

The CAD system is helpful in the diagnosis of thyroid cancer by both junior radiologists and intermediate-level radiologists, and can reduce the time to achieve diagnosis.

表1 甲状腺结节的超声检查特征[例(%)]
图1 计算机辅助诊断系统诊断甲状腺癌的受试者操作特征曲线
图2 所有超声医师在无CAD模式下和CAD模式下诊断甲状腺癌的受试者操作特征曲线注:CAD为计算机辅助诊断
图3 低年资超声医师在无CAD模式下和CAD模式下诊断甲状腺癌的受试者操作特征曲线注:CAD为计算机辅助诊断
图4 中年资超声医师在无CAD模式下和CAD模式下诊断甲状腺癌的受试者操作特征曲线注:CAD为计算机辅助诊断
图5 高年资超声医师在无CAD模式下和CAD模式下诊断甲状腺癌的受试者操作特征曲线注:CAD为计算机辅助诊断
表2 在2种诊断模式下超声医师的阅片时间比较(s
xˉ
±s
1
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016 [J]. CA Cancer J Clin, 2016, 66(4): 271-289.
2
Cheng SP, Lee JJ, Lin JL, et al. Characterization of thyroid nodules using the proposed thyroid imaging reporting and data system (TI-RADS) [J]. Head Neck, 2013, 35(4): 541-547.
3
Acharya UR, Swapna G, Sree SV, et al. A review on ultrasound-based thyroid cancer tissue characterization and automated classification [J]. Technol Cancer Res Treat, 2014, 13(4): 289-301.
4
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer [J]. Thyroid, 2016, 26(1): 1-133.
5
Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee [J]. J Am Coll Radiol, 2017, 14(5): 587-595.
6
Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk [J]. Radiology, 2011, 260(3): 892-899.
7
Shin JH, Baek JH, Chung J, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised korean society of thyroid radiology consensus statement and recommendations [J]. Korean J Radiol, 2016, 17(3): 370-395.
8
Smith-Bindman R, Lebda P, Feldstein VA, et al. Risk of thyroid cancer based on thyroid ultrasound imaging characteristics: results of a population-based study [J]. Jama Intern Med, 2013, 173(19): 1788-1796.
9
Grani G, Lamartina L, Cantisani V, et al. Interobserver agreement of various thyroid imaging reporting and data systems [J]. Endocr Connect, 2018, 7(1): 1-7.
10
Hoang JK, Middleton WD, Farjat AE, et al. Interobserver variability of sonographic features used in the american college of radiology thyroid imaging reporting and data system [J]. AJR Am J Roentgenol, 2018, 211(1): 162-167.
11
Koh J, Kim SY, Lee HS, et al. Diagnostic performances and interobserver agreement according to observer experience: a comparison study using three guidelines for management of thyroid nodules [J]. Acta Radiol, 2018, 59(8): 917-923.
12
Chang Y, Paul AK, Kim N, et al. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: a comparison with radiologist-based assessments [J]. Med Phys, 2016, 43(1): 554.
13
Gitto S, Grassi G, De Angelis C, et al. A computer-aided diagnosis system for the assessment and characterization of low-to-high suspicion thyroid nodules on ultrasound [J]. Radiol Med, 2019, 124(2): 118-125.
14
Song J, Chai YJ, Masuoka H, et al. Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules [J]. Medicine (Baltimore), 2019, 98(15): e15133.
15
孙鑫, 周平, 赵永峰, 等. AmCAD-UT Detection在甲状腺结节超声诊断中的应用 [J]. 中国医学影像技术, 2020, 36(5): 749-753.
16
梁羽, 岳林先, 曹文斌, 等. 基于计算机辅助诊断的人工智能在甲状腺TI-RADS分类中的临床应用价值 [J]. 四川医学, 2021, 42(2): 127-130.
17
Park VY, Han K, Seong YK, et al. Diagnosis of thyroid nodules: performance of a deep learning convolutional neural network model vs. Radiologists [J]. Sci Rep, 2019, 9(1): 17843.
18
Zhao WJ, Fu LR, Huang ZM, et al. Effectiveness evaluation of computer-aided diagnosis system for the diagnosis of thyroid nodules on ultrasound: a systematic review and meta-analysis [J]. Medicine (Baltimore), 2019, 98(32): e16379.
19
Wang L, Yang S, Yang S, et al. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network [J]. World J Surg Oncol, 2019, 17(1): 12.
20
Zhang S, Du H, Jin Z, et al. A novel interpretable computer-aided diagnosis system of thyroid nodules on ultrasound based on clinical experience [J]. IEEE Access, 2020, 8: 53223-53231.
21
Yang S, Gao X, Liu L, et al. Performance and reading time of automated breast us with or without computer-aided detection [J]. Radiology, 2019, 292(3): 540-549.
22
Rodriguez-Ruiz A, Krupinski E, Mordang JJ, et al. Detection of breast cancer with mammography: effect of an artificial intelligence support system [J]. Radiology, 2019, 290(2): 305-314.
23
Choi YJ, Baek JH, Park HS, et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment [J]. Thyroid, 2017, 27(4): 546-552.
24
Gao L, Liu R, Jiang Y, et al. Computer-aided system for diagnosing thyroid nodules on ultrasound: a comparison with radiologist-based clinical assessments [J]. Head Neck, 2018, 40(4): 778-783.
25
Zhang B, Tian J, Pei S, et al. Machine learning-assisted system for thyroid nodule diagnosis [J]. Thyroid, 2019, 29(6): 858-867.
26
Jeong EY, Kim HL, Ha EJ, et al. Computer-aided diagnosis system for thyroid nodules on ultrasonography: diagnostic performance and reproducibility based on the experience level of operators [J]. Eur Radiol, 2019, 29(4): 1978-1985.
27
Kim HL, Ha EJ, Han M. Real-world performance of computer-aided diagnosis system for thyroid nodules using ultrasonography [J]. Ultrasound Med Biol, 2019, 45(10): 2672-2678.
28
Li X, Zhang S, Zhang Q, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study [J]. Lancet Oncol, 2019, 20(2): 193-201.
29
Wu MH, Chen KY, Shih SR, et al. Multi-reader multi-case study for performance evaluation of high-risk thyroid ultrasound with computer-aided detection [J]. Cancers (Basel), 2020, 12(2): 373.
30
Chae EY, Kim HH, Jeong JW, et al. Decrease in interpretation time for both novice and experienced readers using a concurrent computer-aided detection system for digital breast tomosynthesis [J]. Eur Radiol, 2019, 29(5): 2518-2525.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[4] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[5] 吕琦, 惠品晶, 丁亚芳, 颜燕红. 颈动脉斑块易损性的超声造影评估及与缺血性卒中的相关性研究[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1040-1045.
[6] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[7] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[8] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[9] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[10] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[11] 丁雷, 罗文, 杨晓, 庞丽娜, 张佩蒂, 刘海静, 袁佳妮, 刘瑾. 高帧频超声造影在评价C-TIRADS 4-5类甲状腺结节成像特征中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(09): 887-894.
[12] 张茜, 陈佳慧, 高雪萌, 赵傲雪, 黄瑛. 基于高帧频超声造影的影像组学特征鉴别诊断甲状腺结节良恶性的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 895-903.
[13] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[14] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
阅读次数
全文


摘要