1 |
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016 [J]. CA Cancer J Clin, 2016, 66(4): 271-289.
|
2 |
Cheng SP, Lee JJ, Lin JL, et al. Characterization of thyroid nodules using the proposed thyroid imaging reporting and data system (TI-RADS) [J]. Head Neck, 2013, 35(4): 541-547.
|
3 |
Acharya UR, Swapna G, Sree SV, et al. A review on ultrasound-based thyroid cancer tissue characterization and automated classification [J]. Technol Cancer Res Treat, 2014, 13(4): 289-301.
|
4 |
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer [J]. Thyroid, 2016, 26(1): 1-133.
|
5 |
Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee [J]. J Am Coll Radiol, 2017, 14(5): 587-595.
|
6 |
Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk [J]. Radiology, 2011, 260(3): 892-899.
|
7 |
Shin JH, Baek JH, Chung J, et al. Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised korean society of thyroid radiology consensus statement and recommendations [J]. Korean J Radiol, 2016, 17(3): 370-395.
|
8 |
Smith-Bindman R, Lebda P, Feldstein VA, et al. Risk of thyroid cancer based on thyroid ultrasound imaging characteristics: results of a population-based study [J]. Jama Intern Med, 2013, 173(19): 1788-1796.
|
9 |
Grani G, Lamartina L, Cantisani V, et al. Interobserver agreement of various thyroid imaging reporting and data systems [J]. Endocr Connect, 2018, 7(1): 1-7.
|
10 |
Hoang JK, Middleton WD, Farjat AE, et al. Interobserver variability of sonographic features used in the american college of radiology thyroid imaging reporting and data system [J]. AJR Am J Roentgenol, 2018, 211(1): 162-167.
|
11 |
Koh J, Kim SY, Lee HS, et al. Diagnostic performances and interobserver agreement according to observer experience: a comparison study using three guidelines for management of thyroid nodules [J]. Acta Radiol, 2018, 59(8): 917-923.
|
12 |
Chang Y, Paul AK, Kim N, et al. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: a comparison with radiologist-based assessments [J]. Med Phys, 2016, 43(1): 554.
|
13 |
Gitto S, Grassi G, De Angelis C, et al. A computer-aided diagnosis system for the assessment and characterization of low-to-high suspicion thyroid nodules on ultrasound [J]. Radiol Med, 2019, 124(2): 118-125.
|
14 |
Song J, Chai YJ, Masuoka H, et al. Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules [J]. Medicine (Baltimore), 2019, 98(15): e15133.
|
15 |
孙鑫, 周平, 赵永峰, 等. AmCAD-UT Detection在甲状腺结节超声诊断中的应用 [J]. 中国医学影像技术, 2020, 36(5): 749-753.
|
16 |
梁羽, 岳林先, 曹文斌, 等. 基于计算机辅助诊断的人工智能在甲状腺TI-RADS分类中的临床应用价值 [J]. 四川医学, 2021, 42(2): 127-130.
|
17 |
Park VY, Han K, Seong YK, et al. Diagnosis of thyroid nodules: performance of a deep learning convolutional neural network model vs. Radiologists [J]. Sci Rep, 2019, 9(1): 17843.
|
18 |
Zhao WJ, Fu LR, Huang ZM, et al. Effectiveness evaluation of computer-aided diagnosis system for the diagnosis of thyroid nodules on ultrasound: a systematic review and meta-analysis [J]. Medicine (Baltimore), 2019, 98(32): e16379.
|
19 |
Wang L, Yang S, Yang S, et al. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network [J]. World J Surg Oncol, 2019, 17(1): 12.
|
20 |
Zhang S, Du H, Jin Z, et al. A novel interpretable computer-aided diagnosis system of thyroid nodules on ultrasound based on clinical experience [J]. IEEE Access, 2020, 8: 53223-53231.
|
21 |
Yang S, Gao X, Liu L, et al. Performance and reading time of automated breast us with or without computer-aided detection [J]. Radiology, 2019, 292(3): 540-549.
|
22 |
Rodriguez-Ruiz A, Krupinski E, Mordang JJ, et al. Detection of breast cancer with mammography: effect of an artificial intelligence support system [J]. Radiology, 2019, 290(2): 305-314.
|
23 |
Choi YJ, Baek JH, Park HS, et al. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of thyroid nodules on ultrasound: initial clinical assessment [J]. Thyroid, 2017, 27(4): 546-552.
|
24 |
Gao L, Liu R, Jiang Y, et al. Computer-aided system for diagnosing thyroid nodules on ultrasound: a comparison with radiologist-based clinical assessments [J]. Head Neck, 2018, 40(4): 778-783.
|
25 |
Zhang B, Tian J, Pei S, et al. Machine learning-assisted system for thyroid nodule diagnosis [J]. Thyroid, 2019, 29(6): 858-867.
|
26 |
Jeong EY, Kim HL, Ha EJ, et al. Computer-aided diagnosis system for thyroid nodules on ultrasonography: diagnostic performance and reproducibility based on the experience level of operators [J]. Eur Radiol, 2019, 29(4): 1978-1985.
|
27 |
Kim HL, Ha EJ, Han M. Real-world performance of computer-aided diagnosis system for thyroid nodules using ultrasonography [J]. Ultrasound Med Biol, 2019, 45(10): 2672-2678.
|
28 |
Li X, Zhang S, Zhang Q, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study [J]. Lancet Oncol, 2019, 20(2): 193-201.
|
29 |
Wu MH, Chen KY, Shih SR, et al. Multi-reader multi-case study for performance evaluation of high-risk thyroid ultrasound with computer-aided detection [J]. Cancers (Basel), 2020, 12(2): 373.
|
30 |
Chae EY, Kim HH, Jeong JW, et al. Decrease in interpretation time for both novice and experienced readers using a concurrent computer-aided detection system for digital breast tomosynthesis [J]. Eur Radiol, 2019, 29(5): 2518-2525.
|