1 |
董彦, 董凤林, 刘哲婴. 超声BI-RADS评分系统联合超声造影用于乳腺肿块良恶性鉴别的诊断价值 [J]. 中国超声医学杂志, 2019, 35(4): 313-316.
|
2 |
王心宇, 魏琪, 崔新伍, 等. S‐Detect技术在乳腺癌鉴别诊断中的辅助诊断价值 [J]. 中华超声影像学杂志, 2019, 28(3): 246-250.
|
3 |
Li J, Sang T, Yu WH, et al. The value of S-Detect for the differential diagnosis of breast masses on ultrasound: a systematic review and pooled meta-analysis [J]. Med Ultrason, 2020, 22(2): 211-219.
|
4 |
American College of Radiology. Breast imaging reporting and data system (BI-RADS), 5th edn [S/OL]. American College of Radiology, 2013.
URL
|
5 |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
6 |
陈彦博, 胡婷婷, 陈凯, 等. 乳腺癌患者保留乳房手术后复发、转移危险因素分析 [J/OL]. 中华乳腺病杂志(电子版), 2021, 15(3): 143-151.
|
7 |
Heinig J, Witteler R, Schmitz R, et al. Accuracy of classification of breast ultrasound findings based on criteria used for BI-RADS [J]. Ultrasound Obstet Gynecol, 2008, 32(4): 573-578.
|
8 |
Kim K, Song MK, Kim EK, et al. Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist [J]. Ultrasonography, 2017, 36(1): 3-9.
|
9 |
李响, 程慧芳, 闫虹, 等. 常规超声联合S-Detect技术对乳腺病灶的诊断价值 [J]. 中国超声医学杂志, 2019, 35(3): 225-228.
|
10 |
Sun Q, Lin X, Zhao Y, et al. Deep Learning vs. Radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region [J]. Front Oncol, 2020, 10: 53.
|
11 |
Cai S, Wang H, Zhang X, et al. Superb microvascular imaging technology can improve the diagnostic efficiency of the BI-RADS system [J]. Front Oncol, 2021, 11: 634752.
|
12 |
Zhang XY, Zhang L, Li N, et al. Vascular index measured by smart 3-D superb microvascular imaging can help to differentiate malignant and benign breast lesion [J]. Cancer Manag Res, 2019, 11: 5481-5487.
|
13 |
Lee EJ, Chang YW. Combination of quantitative parameters of shear wave elastography and superb microvascular imaging to evaluate breast masses [J]. Korean J Radiol, 2020, 21(9): 1045-1054.
|
14 |
丰波, 黄巧燕, 罗晴霞, 等. 超声弹性成像比值法在乳腺非肿块型病变良恶性鉴别诊断中的应用研究 [J]. 中国超声医学杂志, 2020, 36(6): 499-502.
|
15 |
Sinha D, Kundaragi NG, Sharma S, et al. Can strain elastography be used in reclassification of indeterminate breast lesions in BIRADS lexicon? : A prospective study [J]. Indian J Radiol Imaging, 2020, 30(4): 493-499.
|
16 |
欧冰, 吴嘉仪, 周薪传, 等. 多中心研究: 弹性应变率比值对弹性评分法评估乳腺病灶良恶性的辅助价值探讨 [J]. 中华超声影像学杂志, 2017, 26(10): 867-871.
|
17 |
刘健, 武敬平, 王宁, 等. 弹性应变率比值联合乳腺超声影像报告和数据系统诊断乳腺结节的应用价值 [J]. 中国医学科学院学报, 2021, 43(1): 63-68.
|
18 |
施海建, 丁洁, 姥义. 高频超声联合弹性应变率比值与磁共振成像诊断乳腺癌的临床价值比较 [J/OL]. 中华医学超声杂志(电子版), 2020, 17(10): 993-998.
|
19 |
Li B, Zhao X, Dai SC, et al. Associations between mammography and ultrasound imaging features and molecular characteristics of triple-negative breast cancer [J]. Asian Pac J Cancer Prev, 2014, 15(8): 3555-3559.
|
20 |
Yeo SH, Kim GR, Lee SH, et al. comparison of ultrasound elastography and color Doppler ultrasonography for distinguishing small triple-negative breast cancer from fibroadenoma [J]. J Ultrasound Med, 2018, 37(9): 2135-2146.
|
21 |
詹荔莉, 唐丽娜, 陈轶洁, 等. 乳腺导管原位癌的超声与临床病理特征分析 [J]. 中国超声医学杂志, 2022, 38(3): 278-281.
|