切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (01) : 78 -83. doi: 10.3877/cma.j.issn.1672-6448.2023.01.013

浅表器官超声影像学

多模态超声联合人工智能S-Detect技术校正BI-RADS分类对乳腺肿块的诊断价值
李如冰1, 彭梅1,(), 詹韵韵1, 姜凡1   
  1. 1. 230601 合肥,安徽医科大学第二附属医院超声诊断科
  • 收稿日期:2022-07-20 出版日期:2023-01-01
  • 通信作者: 彭梅
  • 基金资助:
    临床研究培育计划项目(2021LCZD06)

Value of multimodal ultrasound combined with artificial intelligence based S-Detect technique in correcting BI-RADS classification of breast masses

Rubing Li1, Mei Peng1,(), Yunyun Zhan1, Fan Jiang1   

  1. 1. Department of Ultrasonic Diagnosis, Second Affiliated Hospital of Anhui Medical University, Hefei 23060, China
  • Received:2022-07-20 Published:2023-01-01
  • Corresponding author: Mei Peng
引用本文:

李如冰, 彭梅, 詹韵韵, 姜凡. 多模态超声联合人工智能S-Detect技术校正BI-RADS分类对乳腺肿块的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(01): 78-83.

Rubing Li, Mei Peng, Yunyun Zhan, Fan Jiang. Value of multimodal ultrasound combined with artificial intelligence based S-Detect technique in correcting BI-RADS classification of breast masses[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(01): 78-83.

目的

探讨多模态超声联合人工智能S-Detect技术校正乳腺影像报告与数据系统(BI-RADS)分类对诊断乳腺肿块良恶性的价值。

方法

本研究首先采用常规超声、超微血流成像技术及应变弹性成像技术,将2021年7月至12月安徽医科大学第二附属医院收集的连续130例乳腺肿块病例作为训练集进行超声检查,超微血流成像及弹性成像结果分别以血管指数(VI)、弹性应变率(SR)值表示,以病理结果为金标准得出良恶性肿块VI值、SR值的截断值;然后以2022年1月至5月连续110例乳腺肿块作为验证集联合人工智能S-Detect技术,采用常规超声进行BI-RADS分级诊断,再以超微血管成像技术、应变弹性成像技术及S-Detect技术评估结果校正BI-RADS分级,以病理结果为金标准绘制受试者操作特征(ROC)曲线,采用Z检验比较不同诊断方法(常规超声+S-Detect+VI值+ SR值联合诊断以及各方法独立诊断)ROC曲线下面积的差异,计算不同诊断方法的敏感度、特异度、准确性、阳性预测值和阴性预测值。

结果

训练集130例乳腺肿块中恶性70例、良性60例,VI值及SR值良恶性截断值分别为4.05、2.59。验证集110例乳腺肿块中恶性63例、良性47例,常规超声、S-Detect、VI值、SR值及四者联合诊断乳腺肿块良恶性的ROC曲线下面积分别为0.936、0.588、0.827、0.802、0.785,联合诊断的效能优于单独应用各独立模块,差异具有统计学意义(Z=6.074,P<0.001;Z=2.668,P=0.008;Z=3.084,P=0.002;Z=3.293,P=0.001),联合诊断的敏感度为98.4%、特异度为87.2%、准确性为93.6%、阳性预测值为91.2%、阴性预测值为97.6%。根据2013版美国放射学会BI-RADS≥4类肿块应行穿刺活检,穿刺活检率由87.3%(96/110)降至61.8%(68/110),并校正4例被错判为良性的恶性病例(非特殊类型的浸润性乳腺癌3例,导管内原位癌1例),校正32例错判为恶性的良性病例(腺病17例、腺病伴纤维腺瘤14例、叶状肿瘤1例)。

结论

多模态超声联合人工智能S-Detect技术校正BI-RADS分类可提升乳腺肿块良恶性的诊断效能,减少不必要的穿刺活检、提高乳腺恶性肿块的检出率。

Objective

To explore the value of multimodal ultrasonography in correcting breast imaging reporting and data system (BI-RADS) classification of benign and malignant breast masses.

Methods

Conventional ultrasound, ultramicro blood flow imaging, and strain elastography were used to examine 130 consecutive cases of breast masses collected from the Second Affiliated Hospital of Anhui Medical University from July 2021 to December 2021 as a training set. The results of ultramicro blood flow imaging and elastography are expressed as vascular index (VI) and elastic strain (SR) ratio, respectively. Taking the pathological results as the gold standard, the cut-off values of VI and SR for the diagnosis of benign and malignant masses were obtained. Then, 110 consecutive cases of breast masses collected from January to May 2022 were selected as the verification set, BI-RADS grading was performed by conventional ultrasound, and the BI-RADS grading results were corrected by the evaluation results of ultramicroangiography, strain elastography, and artificial intelligence based S-Detect technology. The receiver operating characteristic (ROC) curve was drawn according to the pathological results. The area under the ROC curve (AUC) values of combined diagnosis and independent diagnosis were compared by Z test, and the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of different diagnostic methods were calculated.

Results

Among the 130 cases of breast masses in the training set, 70 were malignant and 60 were benign. The cut-off values of VI and SR were 4.05 and 2.59, respectively. Among the 110 cases of breast masses in the verification set, 63 were malignant and 47 were benign; the AUC values of conventional ultrasound, S-Detect, VI, SR, and their combination in the diagnosis of benign and malignant breast masses were 0.936, 0.588, 0.827, 0.802, and 0.785, respectively, and Z test showed that the efficacy of combined diagnosis was better than that of any independent modality (Z=6.074, P<0.001; Z=2.668, P=0.008; Z=3.084, P=0.002; Z=3.293, P=0.001). For joint diagnosis, the sensitivity was 98.4%, the specificity was 87.2%, the accuracy was 93.6%, the PPV was 91.2%, and the NPV was 97.6%. According to the 2013 version of American College of Radiology BI-RADS, for ≥ category 4 masses, puncture biopsy should be performed. After correction, the puncture biopsy rate decreased from 87.3% (96/110) to 61.8% (68/110). In addition, 4 cases were found to be misdiagnosed as benign (3 cases of non-special type of invasive breast cancer and 1 case of intraductal carcinoma in situ) and 32 cases were found to be misdiagnosed as malignant (17 cases of adenosis, 14 cases of adenosis with fibroadenoma, and 1 case of phyllodes tumor).

Conclusion

Multimodal ultrasound combined with artificial intelligence-based S-Detect technique to correct BI-RADS classification can improve the diagnostic efficiency for breast masses, reduce unnecessary puncture biopsies, and improve the detection rate for malignant breast masses.

图1 训练集乳腺肿块血管指数(VI)、弹性应变率(SR)值对乳腺肿块良恶性诊断的受试者操作特征曲线
表1 校正前后乳腺肿块BI-RADS良恶性分类结果
图2 41岁女性,肿块BI-RADS分类由4A类下降至3类,病理诊断:腺病(硬化性腺病)。图a:二维超声显示为形态不规则的低回声;图b:血管指数为0(<4.05);图c:弹性应变率值为5.34(>2.59);图d:S-Detect评估长短轴切面均为“可能良性”
图3 不同诊断方法对乳腺肿块良恶性诊断的受试者操作特征曲线
表2 不同诊断方法对乳腺肿块的诊断效能比较
1
董彦, 董凤林, 刘哲婴. 超声BI-RADS评分系统联合超声造影用于乳腺肿块良恶性鉴别的诊断价值 [J]. 中国超声医学杂志, 2019, 35(4): 313-316.
2
王心宇, 魏琪, 崔新伍, 等. S‐Detect技术在乳腺癌鉴别诊断中的辅助诊断价值 [J]. 中华超声影像学杂志, 2019, 28(3): 246-250.
3
Li J, Sang T, Yu WH, et al. The value of S-Detect for the differential diagnosis of breast masses on ultrasound: a systematic review and pooled meta-analysis [J]. Med Ultrason, 2020, 22(2): 211-219.
4
American College of Radiology. Breast imaging reporting and data system (BI-RADS), 5th edn [S/OL]. American College of Radiology, 2013.

URL    
5
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
6
陈彦博, 胡婷婷, 陈凯, 等. 乳腺癌患者保留乳房手术后复发、转移危险因素分析 [J/OL]. 中华乳腺病杂志(电子版), 2021, 15(3): 143-151.
7
Heinig J, Witteler R, Schmitz R, et al. Accuracy of classification of breast ultrasound findings based on criteria used for BI-RADS [J]. Ultrasound Obstet Gynecol, 2008, 32(4): 573-578.
8
Kim K, Song MK, Kim EK, et al. Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist [J]. Ultrasonography, 2017, 36(1): 3-9.
9
李响, 程慧芳, 闫虹, 等. 常规超声联合S-Detect技术对乳腺病灶的诊断价值 [J]. 中国超声医学杂志, 2019, 35(3): 225-228.
10
Sun Q, Lin X, Zhao Y, et al. Deep Learning vs. Radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region [J]. Front Oncol, 2020, 10: 53.
11
Cai S, Wang H, Zhang X, et al. Superb microvascular imaging technology can improve the diagnostic efficiency of the BI-RADS system [J]. Front Oncol, 2021, 11: 634752.
12
Zhang XY, Zhang L, Li N, et al. Vascular index measured by smart 3-D superb microvascular imaging can help to differentiate malignant and benign breast lesion [J]. Cancer Manag Res, 2019, 11: 5481-5487.
13
Lee EJ, Chang YW. Combination of quantitative parameters of shear wave elastography and superb microvascular imaging to evaluate breast masses [J]. Korean J Radiol, 2020, 21(9): 1045-1054.
14
丰波, 黄巧燕, 罗晴霞, 等. 超声弹性成像比值法在乳腺非肿块型病变良恶性鉴别诊断中的应用研究 [J]. 中国超声医学杂志, 2020, 36(6): 499-502.
15
Sinha D, Kundaragi NG, Sharma S, et al. Can strain elastography be used in reclassification of indeterminate breast lesions in BIRADS lexicon? : A prospective study [J]. Indian J Radiol Imaging, 2020, 30(4): 493-499.
16
欧冰, 吴嘉仪, 周薪传, 等. 多中心研究: 弹性应变率比值对弹性评分法评估乳腺病灶良恶性的辅助价值探讨 [J]. 中华超声影像学杂志, 2017, 26(10): 867-871.
17
刘健, 武敬平, 王宁, 等. 弹性应变率比值联合乳腺超声影像报告和数据系统诊断乳腺结节的应用价值 [J]. 中国医学科学院学报, 2021, 43(1): 63-68.
18
施海建, 丁洁, 姥义. 高频超声联合弹性应变率比值与磁共振成像诊断乳腺癌的临床价值比较 [J/OL]. 中华医学超声杂志(电子版), 2020, 17(10): 993-998.
19
Li B, Zhao X, Dai SC, et al. Associations between mammography and ultrasound imaging features and molecular characteristics of triple-negative breast cancer [J]. Asian Pac J Cancer Prev, 2014, 15(8): 3555-3559.
20
Yeo SH, Kim GR, Lee SH, et al. comparison of ultrasound elastography and color Doppler ultrasonography for distinguishing small triple-negative breast cancer from fibroadenoma [J]. J Ultrasound Med, 2018, 37(9): 2135-2146.
21
詹荔莉, 唐丽娜, 陈轶洁, 等. 乳腺导管原位癌的超声与临床病理特征分析 [J]. 中国超声医学杂志, 2022, 38(3): 278-281.
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[4] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[5] 吕琦, 惠品晶, 丁亚芳, 颜燕红. 颈动脉斑块易损性的超声造影评估及与缺血性卒中的相关性研究[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1040-1045.
[6] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[7] 武玺宁, 欧阳云淑, 张一休, 孟华, 徐钟慧, 张培培, 吕珂. 胎儿心脏超声检查在抗SSA/Ro-SSB/La抗体阳性妊娠管理中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1056-1060.
[8] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[9] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[10] 张宝富, 俞劲, 叶菁菁, 俞建根, 马晓辉, 刘喜旺. 先天性原发隔异位型肺静脉异位引流的超声心动图诊断[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1074-1080.
[11] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[12] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[13] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[14] 赵文毅, 邹冰子, 蔡冠晖, 刘永志, 温红. 超声应变力弹性成像联合MRI-DWI靶向引导穿刺在前列腺病变诊断中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 988-994.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
阅读次数
全文


摘要