切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (01) : 78 -83. doi: 10.3877/cma.j.issn.1672-6448.2023.01.013

浅表器官超声影像学

多模态超声联合人工智能S-Detect技术校正BI-RADS分类对乳腺肿块的诊断价值
李如冰1, 彭梅1,(), 詹韵韵1, 姜凡1   
  1. 1. 230601 合肥,安徽医科大学第二附属医院超声诊断科
  • 收稿日期:2022-07-20 出版日期:2023-01-01
  • 通信作者: 彭梅
  • 基金资助:
    临床研究培育计划项目(2021LCZD06)

Value of multimodal ultrasound combined with artificial intelligence based S-Detect technique in correcting BI-RADS classification of breast masses

Rubing Li1, Mei Peng1,(), Yunyun Zhan1, Fan Jiang1   

  1. 1. Department of Ultrasonic Diagnosis, Second Affiliated Hospital of Anhui Medical University, Hefei 23060, China
  • Received:2022-07-20 Published:2023-01-01
  • Corresponding author: Mei Peng
引用本文:

李如冰, 彭梅, 詹韵韵, 姜凡. 多模态超声联合人工智能S-Detect技术校正BI-RADS分类对乳腺肿块的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2023, 20(01): 78-83.

Rubing Li, Mei Peng, Yunyun Zhan, Fan Jiang. Value of multimodal ultrasound combined with artificial intelligence based S-Detect technique in correcting BI-RADS classification of breast masses[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(01): 78-83.

目的

探讨多模态超声联合人工智能S-Detect技术校正乳腺影像报告与数据系统(BI-RADS)分类对诊断乳腺肿块良恶性的价值。

方法

本研究首先采用常规超声、超微血流成像技术及应变弹性成像技术,将2021年7月至12月安徽医科大学第二附属医院收集的连续130例乳腺肿块病例作为训练集进行超声检查,超微血流成像及弹性成像结果分别以血管指数(VI)、弹性应变率(SR)值表示,以病理结果为金标准得出良恶性肿块VI值、SR值的截断值;然后以2022年1月至5月连续110例乳腺肿块作为验证集联合人工智能S-Detect技术,采用常规超声进行BI-RADS分级诊断,再以超微血管成像技术、应变弹性成像技术及S-Detect技术评估结果校正BI-RADS分级,以病理结果为金标准绘制受试者操作特征(ROC)曲线,采用Z检验比较不同诊断方法(常规超声+S-Detect+VI值+ SR值联合诊断以及各方法独立诊断)ROC曲线下面积的差异,计算不同诊断方法的敏感度、特异度、准确性、阳性预测值和阴性预测值。

结果

训练集130例乳腺肿块中恶性70例、良性60例,VI值及SR值良恶性截断值分别为4.05、2.59。验证集110例乳腺肿块中恶性63例、良性47例,常规超声、S-Detect、VI值、SR值及四者联合诊断乳腺肿块良恶性的ROC曲线下面积分别为0.936、0.588、0.827、0.802、0.785,联合诊断的效能优于单独应用各独立模块,差异具有统计学意义(Z=6.074,P<0.001;Z=2.668,P=0.008;Z=3.084,P=0.002;Z=3.293,P=0.001),联合诊断的敏感度为98.4%、特异度为87.2%、准确性为93.6%、阳性预测值为91.2%、阴性预测值为97.6%。根据2013版美国放射学会BI-RADS≥4类肿块应行穿刺活检,穿刺活检率由87.3%(96/110)降至61.8%(68/110),并校正4例被错判为良性的恶性病例(非特殊类型的浸润性乳腺癌3例,导管内原位癌1例),校正32例错判为恶性的良性病例(腺病17例、腺病伴纤维腺瘤14例、叶状肿瘤1例)。

结论

多模态超声联合人工智能S-Detect技术校正BI-RADS分类可提升乳腺肿块良恶性的诊断效能,减少不必要的穿刺活检、提高乳腺恶性肿块的检出率。

Objective

To explore the value of multimodal ultrasonography in correcting breast imaging reporting and data system (BI-RADS) classification of benign and malignant breast masses.

Methods

Conventional ultrasound, ultramicro blood flow imaging, and strain elastography were used to examine 130 consecutive cases of breast masses collected from the Second Affiliated Hospital of Anhui Medical University from July 2021 to December 2021 as a training set. The results of ultramicro blood flow imaging and elastography are expressed as vascular index (VI) and elastic strain (SR) ratio, respectively. Taking the pathological results as the gold standard, the cut-off values of VI and SR for the diagnosis of benign and malignant masses were obtained. Then, 110 consecutive cases of breast masses collected from January to May 2022 were selected as the verification set, BI-RADS grading was performed by conventional ultrasound, and the BI-RADS grading results were corrected by the evaluation results of ultramicroangiography, strain elastography, and artificial intelligence based S-Detect technology. The receiver operating characteristic (ROC) curve was drawn according to the pathological results. The area under the ROC curve (AUC) values of combined diagnosis and independent diagnosis were compared by Z test, and the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of different diagnostic methods were calculated.

Results

Among the 130 cases of breast masses in the training set, 70 were malignant and 60 were benign. The cut-off values of VI and SR were 4.05 and 2.59, respectively. Among the 110 cases of breast masses in the verification set, 63 were malignant and 47 were benign; the AUC values of conventional ultrasound, S-Detect, VI, SR, and their combination in the diagnosis of benign and malignant breast masses were 0.936, 0.588, 0.827, 0.802, and 0.785, respectively, and Z test showed that the efficacy of combined diagnosis was better than that of any independent modality (Z=6.074, P<0.001; Z=2.668, P=0.008; Z=3.084, P=0.002; Z=3.293, P=0.001). For joint diagnosis, the sensitivity was 98.4%, the specificity was 87.2%, the accuracy was 93.6%, the PPV was 91.2%, and the NPV was 97.6%. According to the 2013 version of American College of Radiology BI-RADS, for ≥ category 4 masses, puncture biopsy should be performed. After correction, the puncture biopsy rate decreased from 87.3% (96/110) to 61.8% (68/110). In addition, 4 cases were found to be misdiagnosed as benign (3 cases of non-special type of invasive breast cancer and 1 case of intraductal carcinoma in situ) and 32 cases were found to be misdiagnosed as malignant (17 cases of adenosis, 14 cases of adenosis with fibroadenoma, and 1 case of phyllodes tumor).

Conclusion

Multimodal ultrasound combined with artificial intelligence-based S-Detect technique to correct BI-RADS classification can improve the diagnostic efficiency for breast masses, reduce unnecessary puncture biopsies, and improve the detection rate for malignant breast masses.

图1 训练集乳腺肿块血管指数(VI)、弹性应变率(SR)值对乳腺肿块良恶性诊断的受试者操作特征曲线
表1 校正前后乳腺肿块BI-RADS良恶性分类结果
图2 41岁女性,肿块BI-RADS分类由4A类下降至3类,病理诊断:腺病(硬化性腺病)。图a:二维超声显示为形态不规则的低回声;图b:血管指数为0(<4.05);图c:弹性应变率值为5.34(>2.59);图d:S-Detect评估长短轴切面均为“可能良性”
图3 不同诊断方法对乳腺肿块良恶性诊断的受试者操作特征曲线
表2 不同诊断方法对乳腺肿块的诊断效能比较
1
董彦, 董凤林, 刘哲婴. 超声BI-RADS评分系统联合超声造影用于乳腺肿块良恶性鉴别的诊断价值 [J]. 中国超声医学杂志, 2019, 35(4): 313-316.
2
王心宇, 魏琪, 崔新伍, 等. S‐Detect技术在乳腺癌鉴别诊断中的辅助诊断价值 [J]. 中华超声影像学杂志, 2019, 28(3): 246-250.
3
Li J, Sang T, Yu WH, et al. The value of S-Detect for the differential diagnosis of breast masses on ultrasound: a systematic review and pooled meta-analysis [J]. Med Ultrason, 2020, 22(2): 211-219.
4
American College of Radiology. Breast imaging reporting and data system (BI-RADS), 5th edn [S/OL]. American College of Radiology, 2013.

URL    
5
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
6
陈彦博, 胡婷婷, 陈凯, 等. 乳腺癌患者保留乳房手术后复发、转移危险因素分析 [J/OL]. 中华乳腺病杂志(电子版), 2021, 15(3): 143-151.
7
Heinig J, Witteler R, Schmitz R, et al. Accuracy of classification of breast ultrasound findings based on criteria used for BI-RADS [J]. Ultrasound Obstet Gynecol, 2008, 32(4): 573-578.
8
Kim K, Song MK, Kim EK, et al. Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist [J]. Ultrasonography, 2017, 36(1): 3-9.
9
李响, 程慧芳, 闫虹, 等. 常规超声联合S-Detect技术对乳腺病灶的诊断价值 [J]. 中国超声医学杂志, 2019, 35(3): 225-228.
10
Sun Q, Lin X, Zhao Y, et al. Deep Learning vs. Radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region [J]. Front Oncol, 2020, 10: 53.
11
Cai S, Wang H, Zhang X, et al. Superb microvascular imaging technology can improve the diagnostic efficiency of the BI-RADS system [J]. Front Oncol, 2021, 11: 634752.
12
Zhang XY, Zhang L, Li N, et al. Vascular index measured by smart 3-D superb microvascular imaging can help to differentiate malignant and benign breast lesion [J]. Cancer Manag Res, 2019, 11: 5481-5487.
13
Lee EJ, Chang YW. Combination of quantitative parameters of shear wave elastography and superb microvascular imaging to evaluate breast masses [J]. Korean J Radiol, 2020, 21(9): 1045-1054.
14
丰波, 黄巧燕, 罗晴霞, 等. 超声弹性成像比值法在乳腺非肿块型病变良恶性鉴别诊断中的应用研究 [J]. 中国超声医学杂志, 2020, 36(6): 499-502.
15
Sinha D, Kundaragi NG, Sharma S, et al. Can strain elastography be used in reclassification of indeterminate breast lesions in BIRADS lexicon? : A prospective study [J]. Indian J Radiol Imaging, 2020, 30(4): 493-499.
16
欧冰, 吴嘉仪, 周薪传, 等. 多中心研究: 弹性应变率比值对弹性评分法评估乳腺病灶良恶性的辅助价值探讨 [J]. 中华超声影像学杂志, 2017, 26(10): 867-871.
17
刘健, 武敬平, 王宁, 等. 弹性应变率比值联合乳腺超声影像报告和数据系统诊断乳腺结节的应用价值 [J]. 中国医学科学院学报, 2021, 43(1): 63-68.
18
施海建, 丁洁, 姥义. 高频超声联合弹性应变率比值与磁共振成像诊断乳腺癌的临床价值比较 [J/OL]. 中华医学超声杂志(电子版), 2020, 17(10): 993-998.
19
Li B, Zhao X, Dai SC, et al. Associations between mammography and ultrasound imaging features and molecular characteristics of triple-negative breast cancer [J]. Asian Pac J Cancer Prev, 2014, 15(8): 3555-3559.
20
Yeo SH, Kim GR, Lee SH, et al. comparison of ultrasound elastography and color Doppler ultrasonography for distinguishing small triple-negative breast cancer from fibroadenoma [J]. J Ultrasound Med, 2018, 37(9): 2135-2146.
21
詹荔莉, 唐丽娜, 陈轶洁, 等. 乳腺导管原位癌的超声与临床病理特征分析 [J]. 中国超声医学杂志, 2022, 38(3): 278-281.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 李晓妮, 卫青, 孟庆龙, 牛丽莉, 田月, 吴伟春, 朱振辉, 王浩. 超声心动图在孤立性左心室心尖发育不良疾病中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 937-942.
[3] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[4] 戴飞, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 狄敏. 胎儿心脏超声定量多参数对主动脉缩窄胎儿心脏结构及功能的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 950-958.
[5] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[6] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[7] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[8] 包艳娟, 杨小红, 张涛, 赵胜, 张莉. 阴道斜隔综合征的超声诊断与临床分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 859-864.
[9] 汪洪斌, 张红霞, 何文, 杜丽娟, 程令刚, 张雨康, 张萌. 低级别阑尾黏液性肿瘤与阑尾黏液腺癌超声及超声造影特征分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 865-871.
[10] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[11] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[12] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[13] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[14] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[15] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
阅读次数
全文


摘要