切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (08) : 795 -799. doi: 10.3877/cma.j.issn.1672-6448.2021.08.015

所属专题: 乳腺超声

浅表器官超声影像学

人工智能系统评估BI-RADS 4类乳腺肿块的应用价值
臧爱华1, 姜明1, 孟聪2, 刘梦泽1, 李霞1,()   
  1. 1. 266000 青岛市市立医院超声科
    2. 266000 青岛大学附属医院肿瘤科
  • 收稿日期:2020-06-16 出版日期:2021-08-01
  • 通信作者: 李霞

Application value of artificial intelligence system in BI-RADS grade 4 breast masses

Aihua Zang1, Ming Jiang1, Cong Meng2, Mengze Liu1, Xia Li1,()   

  1. 1. Department of Ultrasound, Qingdao Municipal Hospital, Qingdao 266000, China
    2. Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
  • Received:2020-06-16 Published:2021-08-01
  • Corresponding author: Xia Li
引用本文:

臧爱华, 姜明, 孟聪, 刘梦泽, 李霞. 人工智能系统评估BI-RADS 4类乳腺肿块的应用价值[J]. 中华医学超声杂志(电子版), 2021, 18(08): 795-799.

Aihua Zang, Ming Jiang, Cong Meng, Mengze Liu, Xia Li. Application value of artificial intelligence system in BI-RADS grade 4 breast masses[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(08): 795-799.

目的

探讨人工智能(AI)系统在乳腺影像报告与数据系统(BI-RADS)4类乳腺肿块良恶性鉴别诊断中的价值。

方法

回顾性选取2018年1月至2020年2月于青岛市市立医院超声科初诊为BI-RADS 4类乳腺肿块的女性患者226例。所有患者均行常规超声检查,并经手术或穿刺活检取得病理结果。AI系统与不同年资乳腺超声专科医师(2、4、6年)分别对乳腺肿块超声图像进行分析并判断良恶性,应用四格表计算AI系统及不同年资医师对乳腺癌的诊断准确性,采用χ2检验比较AI系统与不同年资医师对不同大小乳腺癌肿块的诊断准确性。

结果

226例乳腺肿块均经病理证实,其中良性病灶96例,恶性病灶130例。AI系统诊断乳腺恶性肿块的敏感度、特异度、阳性预测值、阴性预测值和准确性分别为93.84%、92.71%、94.57%、91.75%、93.36%,均高于不同年资医师。AI系统与不同年资医师诊断≤0.5 cm、>0.5~1.0 cm、>1.0~1.5 cm的乳腺癌肿块,其诊断准确性差异均有统计学意义(P=0.029、0.011、0.002);诊断>1.5~2.0 cm、>2.0 cm的乳腺癌肿块,其诊断准确性差异均无统计学意义(P=0.117、0.668)。AI系统与2年资医师诊断≤0.5 cm、>0.5~1.0 cm、>1.0~1.5 cm的乳腺癌肿块,其诊断准确性差异均有统计学意义(P=0.006、0.002、0.001)。

结论

AI系统在BI-RADS 4类乳腺肿块良恶性判断中具有较高的诊断价值,尤其对直径≤1.5 cm的乳腺癌的诊断;其可辅助低年资超声医师提高乳腺癌的诊断率。

Objective

To assess the diagnostic value of artificial intelligence(AI) system in the differential diagnosis of benign and malignant breast tumors of breast imaging reporting and data system(BI-RADS) grade 4.

Methods

A retrospective study was performed on 226 female patients with BI-RADS grade 4 breast masses from January 2018 to February 2020 at the Ultrasound Department of Qingdao Municipal Hospital. All the tumors were examined by routine ultrasonography and pathological results were obtained by operation or puncture biopsy. The AI system and breast ultrasound specialists with different years of experiences (2, 4, and 6 years) were used to analyze the breast mass ultrasound images and judge the lesion nature, and the diagnostic accuracy of the AI system and the doctors with different years of experience for breast cancer were calculated by the four-fold table method, and the χ2 test was used to compare the diagnostic accuracy of AI system with that of physicians with different years of experience in breast cancer masses of different sizes.

Results

A total of 226 breast masses were confirmed by pathology, including 96 benign lesions and 130 malignant lesions. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the AI system were 93.84%, 92.71%, 94.57%, 91.75%, and 93.36%, respectively, which were higher than those of doctors with different years of experience. There were significant differences in diagnostic accuracy between the AI system and physicians with different years of experiences (P=0.029, 0.011, and 0.002, respectively) in breast cancer masses ≤0.5 cm,>0.5-1.0 cm, and>1.0-1.5 cm, although there was no significant difference in diagnostic accuracy of breast cancer masses>1.5-2.0 cm and>2.0 cm (P=0.117 and 0.668, respectively). There were significant differences in diagnostic accuracy between the AI system and physicians with 2 years of experience (P=0.006, 0.002, and 0.001, respectively) in breast cancer masses ≤0.5 cm,>0.5-1.0 cm, and>1.0-1.5 cm.

Conclusion

The AI system has high diagnostic value in the differentiation of benign and malignant breast masses of BI-RADS grade 4, especially in the diagnosis of breast cancer whose diameter is less than 1.5 cm, and it can assist junior doctors to improve the diagnostic rate of breast cancer.

表1 226个不同大小乳腺肿块的病理结果(个)
图1 患者,女,42岁,左侧乳腺病灶常规超声及病理图像。图a为超声图像示病灶最大径为1.7 cm,AI系统诊断为良性,高年资医师考虑为恶性肿块;图b为病理证实为左侧乳腺浸润性导管癌(HE ×200)
表2 AI系统、不同年资医师对乳腺良恶性肿块诊断结果与病理诊断结果比较(个)
表3 AI系统与不同年资医师对乳腺良恶性肿块的诊断效能分析(%)
图2 患者,女,38岁,左侧乳腺病灶常规超声及病理图像。图a为超声图像示病灶最大径为0.5 cm,AI系统诊断为恶性,所有年资医师均考虑为良性肿块;图b为病理证实为左侧乳腺导管原位癌(HE ×200)
表4 AI系统与不同年资医师对不同大小乳腺癌肿块的诊断准确性比较[个(%)]
1
Siegel RI, Miller KD, Jemal A. Cancer statistics, 2017 [J]. CA Cancer J Clin, 2017, 67(1): 7-30.
2
Youn I, Choi SH, Moon HJ, et a1. Phyllodes tumors of the breast: ultrasonographic findings and diagnostic performance of ultrasound-guided core needle biopsy [J]. Ultrasound Med Biol, 2013, 39(6): 987-992.
3
周建桥, 詹维伟. 超声乳腺影像报告数据系统及其解读 [J/CD]. 中华医学超声杂志(电子版), 2011, 10(3): 1332-1341.
4
Nakano S, Otsuka M, Mibu A, et al. Significance of fine needleaspiration cytology and vacuum-assisted core needle biopsy forsmall breast lesions [J]. Clin Breast Cancer, 2015, 15(1): e23-e26.
5
张意珍, 黄品同, 洪玉蓉, 等. 超声造影与弹性成像联合评分对乳腺 BI-RADS 4 类病灶的应用价值 [J/CD]. 中华医学超声杂志(电子版), 2019, 2 (16):120-125.
6
Kim K, Song MK, Kim EK, et al. Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist [J]. Ultrasonography, 2017, 36(1): 3-9.
7
Choi JH, Kang BJ, Baek JE, et al. Application of computer-aideddiagnosis in breast ultrasound interpretation: improvementsin diagnostic performance according to reader experience [J]. Ultrasonography, 2018, 37(3): 217-225.
8
唐金海, 姚宇锋. 早期乳腺癌的诊断和外科治疗进展 [J] .中国普外基础与临床杂志, 2011, 18(9): 913-916.
9
Chen CM, Chou YH, Han KC, et al. Breast lesions on sonograms: computer-aided diagnosiswithnearlysetting-independentfeatures and artificial neural networks [J]. Radiology, 2003, 226(2): 504-514.
10
Doi K. Computer-aided diagnosis in medical imaging:historical review, current status and future potential [J]. Comput Med Imaging Graph, 2007, 31(4-5): 198-211.
11
周永刚, 袁丽君, 邢长洋, 等. 超声S-Detect 分类技术在乳腺包块良恶性诊断中的应用价值 [J]. 中华超声影像学杂志, 2017, 26(12): 1053-1056.
12
罗晓, 李安华. 人工智能在乳腺癌诊治中的应用与思考 [J/CD]. 中华医学超声杂志(电子版), 2019, 4(16): 247-250.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[3] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[4] 朱连华, 费翔, 韩鹏, 姜波, 李楠, 罗渝昆. 高帧频超声造影在胆囊息肉样病变中的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 904-910.
[5] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[6] 陈舜, 薛恩生, 叶琴. PDCA在持续改进超声危急值管理制度中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 974-978.
[7] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[8] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[9] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[10] 张丽丽, 陈莉, 余美琴, 聂小艳, 王婧玲, 刘婷. PDCA循环法在超声浅表器官亚专科建设中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 717-721.
[11] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[12] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[13] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
阅读次数
全文


摘要