切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (12) : 1095 -1102. doi: 10.3877/cma.j.issn.1672-6448.2024.12.001

浅表器官超声影像学

超声黏弹性成像技术对≤3 cm 乳腺肿块良恶性的鉴别诊断价值
朱彩霞1, 刘志兴1, 谌芳群1, 王婧玲1, 姚谨1, 彭星琦1, 毛毅1, 陈莉1,()   
  1. 1.330000 南昌大学第一附属医院超声医学科
  • 出版日期:2024-12-01
  • 通信作者: 陈莉
  • 基金资助:
    江西省重点研发计划(20203BBGL73196)

Value of ultrasound viscoelastic imaging technology in differential diagnosis of benign and malignant breast masses≤3 cm

Caixia Zhu1, Zhixing Liu1, Fangqun Chen1, Jingling Wang1, Jin Yao1, Xingqi Peng1, Yi Mao1, Li Chen1,()   

  1. 1.Department of Ultrasound, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
  • Published:2024-12-01
  • Corresponding author: Li Chen
引用本文:

朱彩霞, 刘志兴, 谌芳群, 王婧玲, 姚谨, 彭星琦, 毛毅, 陈莉. 超声黏弹性成像技术对≤3 cm 乳腺肿块良恶性的鉴别诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(12): 1095-1102.

Caixia Zhu, Zhixing Liu, Fangqun Chen, Jingling Wang, Jin Yao, Xingqi Peng, Yi Mao, Li Chen. Value of ultrasound viscoelastic imaging technology in differential diagnosis of benign and malignant breast masses≤3 cm[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(12): 1095-1102.

目的

分析乳腺肿块的黏度特征并探讨超声黏弹性成像技术在乳腺肿块良恶性鉴别中的应用价值。

方法

前瞻性收集2023 年9 月至2024 年6 月就诊于南昌大学第一附属医院的乳腺肿块(≤3 cm)患者151 例。穿刺活检或手术前均行常规超声、超声黏弹性成像及剪切波弹性成像检查,测量肿块区及其周围2 mm 腺体组织的弹性参数及黏弹性参数值。以病理学检查结果为金标准,选择受试者工作特征曲线下面积(AUC)最大的弹性及黏弹性相关参数为最优参数,根据其最优截断值调整超声乳腺影像报告和数据系统(BI-RADS)分类,比较调整前后的诊断效能及准确性。

结果

本研究纳入151 例病灶,87 例良性,64 例恶性。鉴别乳腺肿块良恶性的最佳弹性相关参数为肿块周围2 mm 腺体组织的弹性最大值(S-Emax),最佳黏性系数相关参数为肿块周围2 mm 腺体组织的黏性系数最大值(S-Vmax),最佳频散系数相关参数为肿块周围2 mm 腺体组织的频散系数最大值(S-Dmax),最佳截断值分别为89.76 kPa、6.31 Pa·s、15.37 m/s/kHz。经S-Emax、S-Vmax、S-Dmax 最佳截断值调整BI-RADS 分类后,诊断准确性分别为88.08%、90.73%、84.77%,AUC 分别为0.902、0.920、0.899,均较调整前的准确性(80.13%)及AUC(0.847)增加(均P<0.05)。其中,经S-Vmax 调整后的BIRADS 分类的AUC 最高,但较于其他两者差异无统计学意义(均P>0.05)。

结论

超声黏弹性成像技术能够反映乳腺肿块及其周围组织的黏度信息,在乳腺肿块的良恶性鉴别中具有与剪切波弹性成像技术相当的诊断效能,具有潜在的临床应用价值。

Objective

To analyze the viscosity characteristics of breast masses and investigate the clinical value of ultrasound viscoelasticity imaging in the differential diagnosis of benign and malignant breast masses.

Methods

A total of 151 patients with breast masses (≤3 cm ) were prospectively collected in the First Affiliated Hospital of Nanchang University from September 2023 to June 2024.Conventional ultrasound, ultrasound viscoelasticity imaging, and shear wave elastography were performed before puncture biopsy or surgery.The elastic parameters and viscoelastic parameter values of the mass area and the 2 mm glandular tissue around the mass were measured.Taking the pathological results as the gold standard, the elastic and viscoelastic parameters with the largest area under the receiver operating characteristic curve(AUC) were selected as the optimal parameters.The breast imaging reporting and data system (BI-RADS)classification was adjusted according to the optimal cutoff values, and the adjusted diagnostic efficacy and accuracy were compared.

Results

This study included 151 lesions, of which 87 were diagnosed as benign lesions and 64 as malignant lesions.The best elasticity-related parameter for distinguishing benign and malignant breast masses was the maximum elasticity value of 2 mm glandular tissue around the mass(S-Emax), the best viscosity coefficient-related parameter was the maximum viscosity coefficient value of 2 mm glandular tissue around the mass (S-Vmax), and the best dispersion coefficient-related parameter was the maximum dispersion coefficient value of 2 mm glandular tissue around the mass (S-Dmax).The best cutoffvalues of these parameters were 89.76 kPa, 6.31 Pa·s, and 15.37 m/s/kHz, respectively.After adjusting the BI-RADS classification by the optimal cutoff values of S-Emax, S-Vmax, and S-Dmax, the accuracy rates were 88.08%, 90.73%, and 84.77%, and the AUC were 0.902, 0.920, and 0.899, respectively, which were all higher than the accuracy (80.13%) and AUC (0.847) before adjustment (P<0.05).Among them, the AUC of BIRADS classification adjusted by S-Vmax was the highest, but there was no significant difference compared with those of the other two (P>0.05).

Conclusions

Ultrasound viscoelasticity imaging technology can reflect the viscosity information of breast masses and their surrounding tissues.It has diagnostic efficacy comparable to that of shear wave elastography in differentiating benign from malignant breast masses and has potential clinical application value.

图1 患者女性,61 岁,病理证实为乳腺浸润性癌。图a 为常规二维超声图像;图b 为可信度图;图c 为剪切波弹性成像图;图d 为黏弹性成像图(黏性系数图);图e 为黏弹性成像图(频散系数图)
表1 151 例乳腺病灶的病理类型
表2 乳腺良恶性肿块的常规超声特征及BI-RADS 分类[例(%)]
表3 乳腺良恶性肿块弹性成像及黏弹性成像各参数的诊断效能
参数 恶性组(n=64) 良性组(n=87) t P 截断值 敏感度(%) 特异度(%) 约登指数 AUC 95%CI
E(kPa)
Emean 27.42±12.43 22.70±13.4 2.202 0.029 >19.03 79.69 48.28 0.28 0.640 0.558~0.716
Emax 141.50±56.69 66.09±48.37 8.798 <0.001 >93.53 82.81 86.21 0.69 0.876 0.812~0.924
Emin 3.10±3.12 6.20±4.96 -4.698 <0.001 ≤3.65 75.00 59.77 0.35 0.732 0.654~0.801
Esd 17.49±6.86 10.17±7.42 6.182 <0.001 >10.34 85.94 66.67 0.53 0.815 0.743~0.873
S-Emean 35.79±12.91 22.87±13.04 6.042 <0.001 >25.63 81.25 74.71 0.56 0.795 0.722~0.857
S-Emax 174.91±72.68 72.59±49.75 9.713 <0.001 >89.76 89.06 82.76 0.72 0.900 0.840~0.943
S-Emin 2.86±2.63 5.13±3.82 -4.326 <0.001 ≤1.90 43.75 88.51 0.32 0.706 0.626~0.777
S-Esd 25.74±11.01 11.98±8.22 8.416 <0.001 >16.25 82.81 82.81 0.66 0.871 0.807~0.920
A'-Emean 30.74±11.77 23.01±13.06 3.748 <0.001 >21.52 84.37 56.32 0.41 0.714 0.635~0.785
A'-Emax 182.53±72.61 78.16±54.65 9.661 <0.001 >93.64 89.06 81.61 0.71 0.893 0.832~0.937
A'-Emin 2.10±2.37 4.62±3.71 -5.081 <0.001 ≤1.88 60.94 85.06 0.46 0.775 0.700~0.839
A'-Esd 22.13±8.00 11.67±7.99 7.947 <0.001 >15.61 81.25 81.61 0.63 0.850 0.783~0.903
V(Pa·s)
Vmean 1.50±0.85 1.63±1.04 -0.816 0.416 - - - - - -
Vmax 8.03±3.27 4.68±2.82 6.567 <0.001 >4.81 82.81 71.26 0.54 0.811 0.740~0.870
Vmin 0.05±0.11 0.19±0.27 -4.357 <0.001 ≤0.20 95.31 41.38 0.37 0.669 0.588~0.744
Vsd 1.08±0.53 0.80±0.47 3.380 0.001 >0.87 62.50 74.71 0.37 0.676 0.595~0.750
S-Vmean 1.95±0.76 1.54±0.70 3.423 0.001 >1.62 62.50 71.26 0.34 0.688 0.608~0.761
S-Vmax 9.66±3.00 5.12±2.64 9.854 <0.001 >6.31 90.62 86.21 0.78 0.887 0.825~0.933
S-Vmin 0.05±0.07 0.11±0.15 -3.305 0.001 ≤0.17 98.44 25.29 0.24 0.600 0.517~0.679
S-Vsd 1.50±0.61 0.93±0.49 6.407 <0.001 >1.18 70.31 83.91 0.54 0.807 0.735~0.867
A'-Vmean 1.68±0.78 1.57±0.74 0.840 0.402 - - - - - -
A'-Vmax 10.16±3.12 5.49±2.95 9.375 <0.001 >6.35 93.75 83.91 0.77 0.878 0.815~0.925
A'-Vmin 0.02±0.06 0.09±0.14 -3.951 <0.001 ≤0.07 93.75 34.48 0.28 0.627 0.545~0.704
A'-Vsd 1.31±0.52 0.91±0.49 4.837 <0.001 >0.97 76.56 73.56 0.50 0.748 0.671~0.815
D(m/s/kHz)
Dmean 3.76±2.59 3.66±1.91 0.245 0.807 - - - - - -
Dmax 16.09±3.50 11.95±4.61 6.273 <0.001 >13.98 73.44 73.44 0.42 0.757 0.681~0.823
Dmin 0±0.02 0.11±0.41 -2.481 0.015 - - - - - -
Dsd 3.20±1.24 2.57±1.05 3.391 0.001 >2.80 60.94 66.67 0.28 0.646 0.565~0.722
S-Dmean 4.54±2.05 3.73±1.57 2.640 0.009 >5.68 31.25 90.80 0.22 0.610 0.528~0.688
S-Dmax 17.81±2.36 12.92±4.14 9.172 <0.001 >15.37 85.94 71.26 0.57 0.839 0.770~0.893
S-Dmin 0±0.02 0.01±0.04 -0.801 0.424 - - - - - -
S-Dsd 4.06±1.06 2.84±1.04 7.090 <0.001 >3.37 71.87 78.16 0.50 0.796 0.723~0.858
A'-Dmean 4.05±2.35 3.74±1.66 0.910 0.365 - - - - - -
A'-Dmax 18.05±2.26 13.57±4.18 8.466 <0.001 >15.38 89.06 65.52 0.55 0.820 0.749~0.878
A'-Dmin 0±0.01 0±0.01 -0.749 0.455 - - - - - -
A'-Dsd 3.67±1.11 2.83±1.03 4.826 <0.001 >3.03 75.00 64.37 0.39 0.714 0.634~0.784
表4 经弹性和黏弹性最佳诊断参数调整前后的BI-RADS 分类诊断效能比较
图2 常规超声BI-RADS 分类及经弹性和黏弹性最佳诊断参数调整后的BI-RADS 分类ROC 曲线 注:BI-RADS 为乳腺影像报告和数据系统;S-Emax、S-Vmax、S-Dmax 分别为肿块区周围2 mm 腺体组织最大弹性参数、黏性系数参数、频散系数参数
1
Bray F, Laversanne M, Sung H, et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2024, 74(3): 229-263.
2
Kim S, Tran TXM, Song H, et al.Mammographic breast density,benign breast disease, and subsequent breast cancer risk in 3.9 million Korean women[J].Radiology, 2022, 304(3): 534-541.
3
Mann RM, Cho N, Moy L.Breast MRI: state of the art[J].Radiology,2019, 292(3): 520-536.
4
Sigrist RMS, Liau J, Kaffas AE, et al.Ultrasound elastography: review of techniques and clinical applications[J].Theranostics, 2017, 7(5):1303-1329.
5
Rus G, Faris IH, Torres J, et al.Why are viscosity and nonlinearity bound to make an impact in clinical elastographic diagnosis? [J].Sensors (Basel), 2020, 20(8): 2379.
6
Adler DD, Carson PL, Rubin JM, et al.Doppler ultrasound color flow imaging in the study of breast cancer: preliminary findings[J].Ultrasound Med Biol, 1990, 16(6): 553-559.
7
Xie L, Liu Z, Pei C, et al.Convolutional neural network based on automatic segmentation of peritumoral shear-wave elastography images for predicting breast cancer[J].Front Oncol, 2023, 13:1099650.
8
Jia W, Xia S, Jia X, et al.Ultrasound viscosity imaging in breast lesions: a multicenter prospective study[J].Acad Radiol, 2024, 31(9):3499-3510.
9
谢鹏.基于低频振动的二维超声粘弹性成像方法研究[D].深圳:深圳大学, 2018.
10
Catheline S, Gennisson JL, Delon G, et al.Measuring of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach[J].J Acoust Soc Am, 2004, 116(6): 3734-3741.
11
Poul SS, Ormachea J, Ge GR, et al.Comprehensive experimental assessments of rheological models’ performance in elastography of soft tissues[J].Acta Biomater, 2022, 146: 259-273.
12
Chen X, Shen Y, Zheng Y, et al.Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model[J].Ultrasound Med Biol, 2013, 39(11): 2091-2102.
13
Barry CT, Hazard C, Hah Z, et al.Shear wave dispersion in lean versus steatotic rat livers[J].J Ultrasound Med, 2015, 34(6): 1123-1129.
14
Sugimoto K, Moriyasu F, Oshiro H, et al.The role of multiparametric US of the liver for the evaluation of nonalcoholic steatohepatitis[J].Radiology, 2020, 296(3): 532-540.
15
Jang JK, Lee ES, Seo JW, et al.Two-dimensional shear-wave elastography and US attenuation imaging for nonalcoholic steatohepatitis diagnosis: A cross-sectional, multicenter study[J].Radiology, 2022, 305(1): 118-126.
16
Sugimoto K, Moriyasu F, Oshiro H, et al.Viscoelasticity measurement in rat livers using shear-wave us elastography[J].Ultrasound Med Biol, 2018, 44(9): 2018-2024.
17
Lee DH, Lee JY, Bae JS, et al.Shear-wave dispersion slope from US shear-wave elastography: detection of allograft damage after liver transplantation[J].Radiology, 2019, 293(2): 327-333.
18
Kim TM, Ahn H, Cho JY, et al.Prediction of acute rejection in renal allografts using shear-wave dispersion slope[J].Eur Radiol, 2024,34(7): 4527-4537.
19
王坤, 朱宇莉, 陈凯玲, 等.剪切波频散成像鉴别诊断肝肿瘤良恶性的初步应用[J].中华超声影像学杂志, 2022, 31(6): 518-524.
20
Kumar V, Denis M, Gregory A, et al.Viscoelastic parameters as discriminators of breast masses: Initial human study results[J].PLoS One, 2018, 13(10): e0205717.
21
Sinkus R, Tanter M, Xydeas T, et al.Viscoelastic shear properties of in vivo breast lesions measured by MR elastography[J].Magn Reson Imaging, 2005, 23(2): 159-165.
22
Sinkus R, Tanter M, Catheline S, et al.Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography[J].Magn Reson Med, 2005, 53(2): 372-387.
23
Gautieri A, Vesentini S, Redaelli A, et al.Modeling and measuring visco-elastic properties: From collagen molecules to collagen fibrils[J].Non-Linear Mech, 2013, 56(11): 25-33.
24
Nabavizadeh A, Bayat M, Kumar V, et al.Viscoelastic biomarker for differentiation of benign and malignant breast lesion in ultra- low frequency range[J].Sci Rep, 2019, 9(1): 5737.
25
Su GH, Xiao Y, You C, et al.Radiogenomic-based multiomic analysis reveals imaging intratumor heterogeneity phenotypes and therapeutic targets[J].Sci Adv, 2023, 9(40): eadf0837.
26
Ghatak S, Maytin EV, Mack JA, et al.Roles of proteoglycans and glycosaminoglycans in wound healing and fibrosis[J].Int J Cell Biol,2015, 2015: 834893.
27
Schierbaum N, Rheinlaender J, Schäffer TE.Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells[J].Acta Biomater, 2017, 55: 239-248.
28
Otesteanu CF, Chintada BR, Rominger MB, et al.Spectral quantification of nonlinear elasticity using acoustoelasticity and shearwave dispersion[J].IEEE Trans Ultrason Ferroelectr Freq Control,2019, 66(12): 1845-1855.
29
Zhou J, Zhan W, Chang C, et al.Breast lesions: evaluation with shear wave elastography, with special emphasis on the “stiff rim” sign[J].Radiology, 2014, 272(1): 63-72.
[1] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[2] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[3] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[4] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[5] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[6] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[7] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[8] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[9] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[10] 唐小清, 何萍, 杨友, 罗霞, 张菊英, 杨鑫, 余进洪. 声触诊弹性成像联合脉冲多普勒超声成像参数与早期慢性肾脏病分期的相关性及临床价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 491-499.
[11] 张妍, 原韶玲, 史泽洪, 郭馨阳, 牛菁华. 小肾肿瘤超声漏诊原因分析新思路[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 500-504.
[12] 席芬, 张培培, 孝梦甦, 刘真真, 张一休, 张璟, 朱庆莉, 孟华. 乳腺错构瘤的临床与超声影像学特征分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 505-510.
[13] 单良, 刘怡, 于涛, 徐丽. 老年股骨颈骨折术后患者心理弹性现状及影响因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(05): 294-300.
[14] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[15] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
阅读次数
全文


摘要