切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (10) : 982 -987. doi: 10.3877/cma.j.issn.1672-6448.2025.10.012

基础研究

急性肾静脉闭塞肾脏不同区域杨氏模量差异性的实验研究
张涛1, 徐梓祎3, 徐景竹2, 王兴华2,()   
  1. 1 030001 太原,山西医科大学医学影像学院
    2 030001 太原,山西医科大学第二医院超声科
    3 030012 太原,山西省人民医院超声科
  • 收稿日期:2025-04-25 出版日期:2025-10-01
  • 通信作者: 王兴华
  • 基金资助:
    山西省基础研究计划资助项目(202403021221318)

Differences in Young's modulus across renal regions following acute renal vein occlusion: an experimental study

Tao Zhang1, Ziyi Xu3, Jingzhu Xu2, Xinghua Wang2,()   

  1. 1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
    2 Department of Ultrasound, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
    3 Department of Ultrasound, Shanxi Provincial People's Hospital, Taiyuan 030012, China
  • Received:2025-04-25 Published:2025-10-01
  • Corresponding author: Xinghua Wang
引用本文:

张涛, 徐梓祎, 徐景竹, 王兴华. 急性肾静脉闭塞肾脏不同区域杨氏模量差异性的实验研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 982-987.

Tao Zhang, Ziyi Xu, Jingzhu Xu, Xinghua Wang. Differences in Young's modulus across renal regions following acute renal vein occlusion: an experimental study[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(10): 982-987.

目的

分析急性肾静脉闭塞后肾脏不同区域的杨氏模量差异性并探讨诊断急性肾静脉闭塞的肾脏最佳区域。

方法

取20只新西兰大白兔为研究对象,结扎左肾静脉后2 h测量并比较肾脏不同侧别(健侧组、患侧组)、不同解剖部位(上极、中部、下极)及不同组织结构(皮质、髓质、肾窦)的杨氏模量。采用点二列相关系数分析肾脏不同区域的杨氏模量与急性肾静脉闭塞状态的相关性,采用组内相关系数(ICC)评价杨氏模量测量的可重复性。

结果

在不同解剖部位,健侧组上极与中部、中部与下极间杨氏模量差异有统计学意义(P<0.05)。患侧组上极、中部及下极间杨氏模量差异均无统计学意义(P>0.05)。在不同组织结构,健侧组皮质与肾窦、髓质与肾窦间杨氏模量差异有统计学意义(P<0.05)。患侧组皮质、髓质及肾窦间杨氏模量差异均有统计学意义(P<0.05)。多因素方差分析显示,三向交互效应(急性肾静脉闭塞状态×解剖部位×组织结构)差异无统计学意义(F=1.575,P=0.190)。患侧组相同解剖部位及相同组织结构的杨氏模量均高于健侧组,差异均有统计学意义(P<0.05)。其中,中部皮质的效应量最突出(Cohen's d=2.770),其与急性肾静脉闭塞的相关性最强(r=0.867),测量可重复性最优(ICC=0.987)。

结论

正常肾脏的弹性具有区域异质性,病理状态下肾脏的弹性有重塑的可能,急性肾静脉闭塞使肾脏硬度明显增加,中部皮质可作为诊断急性肾静脉闭塞的肾脏最佳区域。

Objective

To analyze regional heterogeneity in Young's modulus of the kidney following acute renal vein occlusion and identify optimal regions for diagnosis.

Methods

A total of 20 New Zealand White rabbits were used as the study subjects. At 2 hours after ligation of the left renal vein, Young's modulus was measured and compared across different sides (healthy side vs affected side), anatomical locations (upper pole vs mid portion vs lower pole), and organizational structures (cortex vs medulla vs renal sinus) of the kidney. The point-biserial correlation coefficient was employed to analyze the correlation between Young's modulus in various renal regions and the status of acute renal vein occlusion. The intraclass correlation coefficient (ICC) was used to assess the reproducibility of the Young's modulus measurements.

Results

Regarding anatomical locations, in the healthy side group, the differences in Young's modulus were statistically significant between the upper pole and mid portion, and between the mid portion and lower pole (P<0.05). In the affected side group, no statistically significant differences in Young's modulus were observed among the upper pole, mid portion, and lower pole (P>0.05). Regarding organizational structures, in the healthy side group, the differences in Young's modulus were statistically significant between the cortex and renal sinus, and between the medulla and renal sinus (P<0.05). In the affected side group, the differences in Young's modulus among the cortex, medulla, and renal sinus were all statistically significant (P<0.05). Three-way ANOVA revealed that the three-way interaction effect (acute renal vein occlusion status × anatomical location × organizational structure) was not statistically significant (F=1.575, P=0.190). The Young's modulus values in the affected side group were consistently higher than those in the healthy side group for identical anatomical locations and organizational structures, and all these differences were statistically significant (P<0.05). Among these comparisons, the mid-portion cortex demonstrated the most prominent effect size (Cohen's d=2.770), eexhibited the strongest correlation with acute renal vein occlusion (r=0.867), and showed the optimal measurement reproducibility (ICC=0.987).

Conclusion

Renal elasticity in normal kidneys shows regional heterogeneity and undergoes remodeling under pathological conditions. Acute renal vein occlusion causes a significant increase in stiffness, identifying the mid-portion cortex as the optimal diagnostic region.

图1 急性肾静脉闭塞健侧与患侧肾脏中部杨氏模量测量图。图a为健侧肾脏中部皮质、髓质及肾窦测量图;图b为患侧肾脏中部皮质、髓质及肾窦测量图
表1 急性肾静脉闭塞后肾脏不同区域杨氏模量测量的ICC
表2 肾脏不同解剖部位杨氏模量比较(kPa,
±s
表3 肾脏不同组织结构杨氏模量比较(kPa,
±s
表4 急性肾静脉闭塞后肾脏不同区域杨氏模量比较(kPa,
±s
表5 肾脏不同区域杨氏模量与急性肾静脉闭塞状态的点二列相关系数(r值,n=20)
图2 实验兔左肾静脉结扎2 h后病理图像。图a示左肾静脉梗阻性血栓形成(HE ×100);图b示左肾肾小球显著淤血,伴肾小管上皮细胞变性(HE ×100)
1
Brandão LR, Simpson EA, Lau KK. Neonatal renal vein thrombosis[J]. Semin Fetal Neonatal Med, 2011, 16(6): 323-328.
2
Asghar M, Ahmed K, Shah SS, et al. Renal vein thrombosis[J]. Eur Vasc Endovasc Surg, 2007, 34(2): 217-223.
3
Rolim Júnior TL, Guimarães ACCM. Renal vein thrombosis: clinical manifestations and surgical evaluation[J]. Rev Iberoam Humanid Cienc Educ, 2023, 9(9): 3061-3071.
4
Aktas S, Boyvat F, Sevmis S, et al. Analysis of vascular complications after renal transplantation[J]. Transplant Proc, 2011, 43(2): 557-561.
5
Gennisson JL, Grenier N, Combe C, et al. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy[J]. Ultrasound Med Biol, 2012, 38(9): 1559-1567.
6
Liu X, Li N, Xu T, et al. Effect of renal perfusion and structural heterogeneity on shear wave elastography of the kidney: an in vivo and ex vivo study[J]. BMC Nephrol, 2017, 18(1): 265.
7
Nulty CD, Phelan K, Erskine RM. Hydrolysed collagen supplementation enhances patellar tendon adaptations to 12 weeks' resistance training in middle-aged men[J]. Eur J Sport Sci, 2025, 25(4): e12281.
8
Loshusan BR, Shamsil AM, Naish MD, et al. Young's moduli of human lung parenchyma and tumours[J]. J Oncol Res Ther, 2024, 9(1): 10198.
9
李娜, 刘晓娜, 郑海宁, 等. 肾脏中部及下极皮质杨氏模量值差异的动物实验研究[J/CD]. 中华医学超声杂志(电子版), 2018, 15(4): 309-312.
10
Gao J, He W, Cheng LG, et al. Ultrasound strain elastography in assessment of cortical mechanical behavior in acute renal vein occlusion: in vivo animal model[J]. Clin Imaging, 2015, 39(4): 613-618.
11
Vezirkhanov AZ. Features of blood supply to the human kidney with a five-segment concept of its structure[J]. Gac Med Caracas, 2022, 130(3): 545-554.
12
K C T, Das SK, Shetty MS. Renal resistive index: revisited[J]. Cureus, 2023, 15(3): e36091.
13
邹震宇, 刘泽政, 陈玲, 等. 二维剪切波弹性成像评估高血压肾病小鼠肾纤维化的实验研究[J]. 临床超声医学杂志, 2023, 25(12): 945-950.
14
Grenier N, Gennisson JL, Cornelis F, et al. Renal ultrasound elastography[J]. Diagn Interv Imaging, 2013, 94(5): 545-550.
15
Asano K, Ogata A, Tanaka K, et al. Acoustic radiation force impulse elastography of the kidneys[J]. J Ultrasound Med, 2014, 33(5): 793-801.
16
Farris AB, Ellis CL, Rogers TE, et al. Renal medullary and cortical correlates in fibrosis, epithelial mass, microvascularity, and microanatomy using whole slide image analysis morphometry[J]. PLoS One, 2016, 11(8): e0161019.
17
Prasad PV. Evaluation of intra-renal oxygenation by BOLD MRI[J]. Nephron Clin Pract, 2006, 103(2): c58-c65.
18
Viganò M, Massironi S, Lampertico P, et al. Transient elastography assessment of the liver stiffness dynamics during acute hepatitis B[J]. Eur J Gastroenterol Hepatol, 2010, 22(2): 180-184.
19
郑金龙, 韩萍, 柳曦, 等. 下腔静脉病变的螺旋CT诊断[J]. 临床放射学杂志, 2006, 2006(9): 838-842.
20
黄志芳, 吕仁华, 丁红, 等. 以剪切波速度评估慢性肾病分期的最佳肾脏靶区[J]. 中国医学影像技术, 2024, 40(11): 1745-1748.
21
Schneider AG, Calzavacca P, Schelleman A, et al. Contrast-enhanced ultrasound evaluation of renal microcirculation in sheep[J]. Intensive Care Med Exp, 2014, 2(1): 33.
22
李凤, 张蔚蓝, 黄伟俊, 等. 超声及超声造影定量分析在移植肾术后肾功能延迟恢复评价中的应用[J]. 海南医学, 2022, 33(4):494-497.
[1] 浦仕枰, 丁昱, 卜锐, 刘小永, 高楚婷, 史明媛, 夏春娟, 唐月月. 颈动脉Plaque-RADS评分对冠状动脉狭窄程度的预测价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 955-961.
[2] 姚垚, 杨小红, 赵胜, 高艳多, 郭凯莉. 胆道闭锁产前及生后超声诊断分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(10): 962-968.
[3] 周欣, 梁豪进, 邓振宇, 肖菊花, 周小军. 基于人工智能技术评价江西省孕11~13+6周产前超声筛查质量现状及提出能力提升对策[J/OL]. 中华医学超声杂志(电子版), 2025, 22(09): 850-857.
[4] 陆溧玲, 杨秀珍, 徐彬, 赵镭, 钱晶晶, 李晓英, 王彪, 叶菁菁. 婴幼儿陈旧性卵巢囊肿蒂扭转的超声表现及诊断价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 748-753.
[5] 张俊清, 周秘, 张文军, 谭静, 尹立雪. 射血分数保留肝硬化患者的肝脏硬度与左心室功能超声特征及相关性分析[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 768-776.
[6] 颜华伦, 壮健, 朱韦文, 张超, 赵彤, 贾中芝. 肌骨超声联合剪切波弹性成像在不同类型肩袖撕裂术后评估中的临床应用[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 527-534.
[7] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[8] 张硕, 袁建军, 崔明哲, 丁晓, 吴铭, 郭艳艳, 彭会娟, 秦亚飞, 陈晨, 朱好辉. 基于高频超声与剪切波弹性成像评估继发性淋巴水肿患者术后疗效的初步研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 547-555.
[9] 汪浪, 何怡华, 李征毅, 刘翠云, 颉剑锋, 陈健. 母胎超声参数对复发性流产孕妇不良妊娠结局的预测价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 556-563.
[10] 王嘉民, 刘平. 广东省医学会泌尿外科疑难病例多学科会诊(第27期)——肾移植术后原发膀胱癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 809-814.
[11] 宋小飞, 巫嘉文, 孙阳. 后腹腔镜上尿路手术中良性大体积标本体内分块取出技术的应用研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 720-726.
[12] 左泽平, 宇洪涛, 朱金海, 钱俊杰, 徐秀民, 王一行, 梁朝朝, 郝宗耀. 智能无线腔镜在超微通道经皮肾镜取石术中的临床应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(06): 736-741.
[13] 董艳, 郭继武, 毛杰. 儿童重症急性胰腺炎一例诊治分析并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 956-961.
[14] 赵志琪, 吴晓丽, 刘若琪, 曲卓敏, 李董冉, 赵凌霞. 巨噬细胞在糖尿病肾病中作用及治疗药物[J/OL]. 中华临床医师杂志(电子版), 2025, 19(07): 544-549.
[15] 再米拉·依力哈木, 蒋升, 艾比拜·玉素甫. SGLT2抑制剂与肾结石风险:一项荟萃分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(06): 446-453.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?