切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (08) : 597 -601. doi: 10.3877/cma.j.issn.1672-6448.2019.08.009

所属专题: 文献

浅表器官超声影像学

甲状腺超声影像报告和数据系统对甲状腺结节良恶性的鉴别诊断价值
卢晓玲1, 黄鹏飞2, 田付丽2, 谢迎东2, 孙帼2, 黄丽2, 宫锦霞2, 杨斌2,()   
  1. 1. 210009 南京,东南大学附属中大医院超声诊断科
    2. 210002 南京,东部战区总医院超声诊断科
  • 收稿日期:2017-10-17 出版日期:2019-08-01
  • 通信作者: 杨斌

Value of thyroid imaging reporting and data system in differential diagnosis of benign and malignant thyroid nodules

Xiaoling Lu1, Pengfei Huang2, Fuli Tian2, Yingdong Xie2, Guo Sun2, Li Huang2, Jinxia Gong2, Bin Yang2,()   

  1. 1. Department of Ultrasonography, Zhongda Hospital, Southeast University, Nanjing 210009, China
    2. Department of Ultrasonography, General Hospital of Eastern Theater Command, Nanjing 210002, China
  • Received:2017-10-17 Published:2019-08-01
  • Corresponding author: Bin Yang
  • About author:
    Corresponding author: Yang Bin, Email:
引用本文:

卢晓玲, 黄鹏飞, 田付丽, 谢迎东, 孙帼, 黄丽, 宫锦霞, 杨斌. 甲状腺超声影像报告和数据系统对甲状腺结节良恶性的鉴别诊断价值[J/OL]. 中华医学超声杂志(电子版), 2019, 16(08): 597-601.

Xiaoling Lu, Pengfei Huang, Fuli Tian, Yingdong Xie, Guo Sun, Li Huang, Jinxia Gong, Bin Yang. Value of thyroid imaging reporting and data system in differential diagnosis of benign and malignant thyroid nodules[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(08): 597-601.

目的

探讨2017年美国放射学会(ACR)提出的甲状腺超声影像报告和数据系统(TI-RADS)鉴别诊断甲状腺结节良恶性的效能及其应用价值。

方法

回顾性分析2016年11月及12月东部战区总医院收治的经细针穿刺活检(FNA)或手术病理证实的甲状腺结节患者176例,共216个结节。根据TI-RADS分类对结节的超声特征(包括结构、回声、形态、边缘、局灶性强回声)量化评分,根据结节大小将结节分为FNA组、随访组、不予处理组。采用χ2检验比较TI-RADS分类鉴别诊断甲状腺结节良恶性与病理结果差异。以病理结果作为"金标准",绘制TI-RADS分类鉴别诊断甲状腺结节良恶性的受试者操作特征(ROC)曲线。

结果

216个甲状腺结节中,良性84个,恶性132个。TI-RADS 1、2、3、4、5类结节分别为3、24、23、60、106个,恶性率分别为0、0、17.3%(4/23)、48.3%(29/60)、93.4%(99/106)。以TI-RADS 1~3类判为良性,TI-RADS 4、5类判为恶性,TI-RADS分类鉴别诊断甲状腺结节良恶性与病理结果比较,差异有统计学意义(χ2=77.222,P<0.001)。TI-RADS分类鉴别诊断甲状腺结节良恶性的敏感度、特异度、阳性预测值、阴性预测值分别为97.0%、54.2%、77.2%、91.8%。ROC曲线显示,TI-RADS分类鉴别诊断甲状腺结节良恶性的最佳阈值为5.5分,曲线下面积(AUC)为0.918,标准误为0.019,95%CI为0.881~0.956,约登指数为0.699。TI-RADS 1、2类结节均为不予处理组,良性率为100.0%(3/3,24/24);3类结节FNA组、随访组、不予处理组恶性率分别为18.2%(2/11)、0、25.0%(2/8);4类结节3组恶性率分别为31.0%(9/29)、63.6%(7/11)、65.0%(13/20);5类结节3组恶性率分别为96.3%(52/54)、88.9%(40/45)、100.0%(7/7)。

结论

TI-RADS分类能有效鉴别甲状腺结节良恶性,尤其是对甲状腺良性结节,有较高的诊断能力。TI-RADS 3类及以上不同大小的甲状腺结节均有恶性可能,应用TI-RADS分类判断可疑恶性的甲状腺结节是否行FNA时可放宽大小指征。

Objective

To assess the value of the thyroid imaging reporting and data system (TI-RADS), which was developed by the American College of Radiology in 2017, in diagnosing benign and malignant thyroid nodules.

Methods

A total of 176 patients with 216 thyroid nodules were retrospectively collected in this study at General Hospital of Eastern Theater Command. They were quantitatively evaluated for ultrasound features (structure, echo, morphology, margins, and focal echogenicity) by using the 2017 TI-RADS ultrasonographic stratification and were divided into a fine needle aspiration (FNA), a follow-up group, and an undealt group according to nodule size. The results were compared with FNA or surgery-based pathological results. The results of TI-RADS stratification between benign and malignant thyroid nodules were compared by the chi-square test. The receiver operating characteristic (ROC) curve analysis was conducted to determine the diagnostic values of thyroid TI-RADS stratification.

Results

There were 84 benign and 132 malignant nodules in 216 thyroid nodules. They were classified into five categories according to the scores 0-14. The malignant rates of TI-RADS 1, 2, 3, 4, and 5 were 0, 0, 17.3%(4/23), 48.3%(29/60), and 93.4%(99/106), respectively. When TI-RADS 1, 2, and 3 thyroid nodules were classified as benign nodules, and TI-RADS 4 and 5 categories were classified as malignant nodules, the sensitivity, specificity, positive predictive value, and negative predictive value were 97.0%, 54.2%, 77.2%, and 91.8%, respectively. The area under the ROC curve was 0.918 (95% confidence interval [CI]: 0.881-0.956), and the Youden index was 0.699 with a critical value of 5.5. There was a statistically significant difference between TI-RADS stratification and pathological examination (χ2=77.222, Ρ<0.001). TI-RADS 1 and 2 nodules belonged to the undealt group. The rates of malignancy in TI-RADS 3 nodules were 18.2%(2/11), 0, and 25.0%(2/8) in the FNA group, follow-up group, and undealt group, respectively; the corresponding rates in TI-RADS 4 and 5 nodules were 31.0%(9/29), 63.6%(7/11), and 65.0%(13/20), and 96.3%(52/54), 88.9%(40/45), and 100.0%(7/7), respectively.

Conclusion

The TI-RADS classification of thyroid nodules has a high accuracy to identify benign and malignant nodules, especially benign nodules. Since TI-RADS 3 and above nodules of different sizes are all likely to be malignant, the indications for FNA of suspected malignant thyroid nodules according to TI-RADS classification in terms of nodule size may not be strictly obeyed.

图1 甲状腺结节超声声像图。图a为囊性结节,0分,TI-RADS 1类,病理结果:甲状腺滤泡上皮增生,考虑甲状腺良性病变;图b为囊实性复合结节,2分,TI-RADS 2类,病理结果:结节性甲状腺肿伴肿瘤形成;图c为实性等回声结节,3分,TI-RADS 3类,病理结果:结节性甲状腺肿伴局灶性滤泡增生结节形成;图d为实性低回声结节,6分,TI-RADS 4类,病理结果:甲状腺乳头状癌;图e为极低回声结节,7分,TI-RADS 5类,病理结果:考虑良性病变可能性大;图f为实性低回声伴微钙化结节,10分,TI-RADS 5类,病理结果:甲状腺乳头状癌。TI-RADS为甲状腺超声影像报告和数据系统
表1 216个甲状腺结节TI-RADS分类与病理结果[个(%)]
表2 TI-RADS分类鉴别诊断甲状腺结节良恶性的价值(个)
图2 甲状腺超声影像报告和数据系统鉴别诊断甲状腺结节良恶性的受试者操作特征曲线。曲线下面积为0.918
表3 不同TI-RADS分类甲状腺结节不同处理方法的病理诊断结果[%(个/个)]
1
Horvath E, Majlis S, Rossi R, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management [J]. J Clin Endocrinol Metab, 2009, 94(5): 1748-1751.
2
Grant EG, Tessler FN, Hoang JK, et al. Thyroid Ultrasound Reporting Lexicon: White Paper of the ACR Thyroid Imaging, Reporting and Data System (TIRADS) Committee [J]. J Am Coll Radiol, 2015, 12(12 Pt A): 1272-1279.
3
Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee [J]. J Am Coll Radiol, 2017, 14(5): 587-595.
4
Tessler FN, Middleton WD, Grant EG. Thyroid Imaging Reporting and Data System (TI-RADS): A User′s Guide [J]. Radiology, 2018, 287(1): 29-36.
5
Middleton WD, Teefey SA, Reading CC, et al. Multiinstitutional Analysis of Thyroid Nodule Risk Stratification Using the American College of Radiology Thyroid Imaging Reporting and Data System [J]. AJR Am J Roentgenol, 2017, 208(6): 1331-1341.
6
刘春蕊, 黄鹏飞, 谢迎东, 等. 超声造影定性分析鉴别诊断甲状腺良恶性结节的价值 [J/CD]. 中华医学超声杂志: 电子版, 2017, 14(3): 220-225.
7
陈晓康, 陈少华, 吕国荣. 超声TI-RADS分类对甲状腺结节的诊断价值 [J]. 中国超声医学杂志, 2012, 28(12): 1066-1068.
8
吴昊, 陈琴, 周青, 等. 评价剪切波弹性成像结合超声造影对甲状腺TI-RADS 3、4类结节的鉴别诊断价值 [J]. 中国超声医学杂志, 2015, 31(8): 676-679.
9
吴松年, 何建娣, 蒋天安, 等. 声触诊组织成像量化技术鉴别诊断甲状腺TI-RADS 4类结节的临床研究 [J]. 中华超声影像学杂志, 2016, 25(7): 573-578.
10
陈建设, 张超, 骆洁丽, 等. 超声造影在细胞学不能明确诊断的甲状腺结节中的应用 [J]. 温州医科大学学报, 2017, 47(2): 128-131.
11
Wildman-Tobriner B, Buda M, Hoang JK, et al. Using Artificial Intelligence to Revise ACR TI-RADS Risk Stratification of Thyroid Nodules: Diagnostic Accuracy and Utility [J]. Radiology, 2019, 292(1): 112-119.
12
Cheng P, Chen ED, Zheng HM, et al. Ultrasound score to select subcentimeter-sized thyroid nodules requiring ultrasound-guided fine needle aspiration biopsy in eastern China [J]. Asian Pac J Cancer Prev, 2013, 14(8): 4689-4692.
13
张波, 徐景竹, 吴琼. 2015年美国甲状腺学会《成人甲状腺结节与分化型甲状腺癌诊治指南》解读:超声部分 [J]. 中国癌症杂志, 2016, 26(1): 19-24.
14
Haugen BR. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: What is new and what has changed? [J]. Cancer, 2016, 123(3): 372-381.
15
孙婷, 姚梅琪, 沈国丽. 甲状腺癌与甲状腺结节直径的临床分析 [J]. 护理与康复, 2017, 16(7): 748-749.
[1] 章建全, 程杰, 陈红琼, 闫磊. 采用ACR-TIRADS评估甲状腺消融区的调查研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 966-971.
[2] 罗辉, 方晔. 品管圈在提高甲状腺结节细针穿刺检出率中的应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 972-977.
[3] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[4] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[5] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[6] 刘畅, 蒋洁, 胥雪冬, 崔立刚, 王淑敏, 陈文. 北京市海淀区医疗机构甲状腺超声检查及TIRADS分类基线调查[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 693-697.
[7] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[8] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[9] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[10] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[11] 张妍, 原韶玲, 史泽洪, 郭馨阳, 牛菁华. 小肾肿瘤超声漏诊原因分析新思路[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 500-504.
[12] 席芬, 张培培, 孝梦甦, 刘真真, 张一休, 张璟, 朱庆莉, 孟华. 乳腺错构瘤的临床与超声影像学特征分析[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 505-510.
[13] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[14] 张琛, 秦鸣, 董娟, 陈玉龙. 超声检查对儿童肠扭转缺血性改变的诊断价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 565-568.
[15] 陈秀晓, 隋文倩, 王珉鑫, 吴圆圆. 腹股沟斜疝并腹腔游离体超声表现一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 516-517.
阅读次数
全文


摘要